In my frame (S) I measure two events which occur at the same place, but different times t_{1} and t_{2} (they are NOT simultaneous)

Might you (in frame S^{\prime}) measure those SAME two events to occur simultaneously in your frame?
A. Possibly, if I'm in the right frame!
B. Not a chance
C. Definitely need more info!
D. ???

TRUE or FALSE: For any trajectory in a "1+1"-dimensional Minkowski diagram, the slope can be no greater than 1.
A. True
B. False

Two events have a timelike separation. In a "1+1"dimensional spacetime (Minkowski) diagram (x horizontal, ct vertical), the magnitude of the slope of a line connecting the two events is
A. Greater than 1
B. Equal to 1
C. Less than 1

Consider the world line of an object drawn on a Minkowski (space-time) diagram. At any point in that space, the slope of that line is:
A. larger than 1
B. less than 1
C. able to take on any value

Points that lie outside the light cone for a given event are:
A. accessible no matter where they are
B. accessible for given world lines (trajectories)
C. always inaccessible

The space time interval is defined by:

$$
I \equiv x^{2}-c^{2} t^{2}
$$

Events with common space time intervals lie on a hyperbola of constant I.

True or False: A Lorentz boost (change to another inertial frame) can allow you to shift between different hyperbolas.
A. True
B. False

