ANNOUNCEMENTS

- What's left?
- Quiz 7 (Due Apr. 20)
- Homework 13 (Due Apr. 20)
- If we finish early, we finish early.

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when v is very small compared to c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when u^{\prime} is c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when v is c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

I have seen the Einstein summation notation before:

$$
\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\mu}
$$

A. Yes and I'm comfortable with it
B. Yes, but I'm just a little rusty with it
C. Yes, but I don't remember it it all
D. Nope

True or False: The dot product (in 3 space) is invariant to

 rotations.$\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\mu}$
A. True
B. False
C. No idea

Displacement is a defined quantity

$$
\Delta x^{\mu} \equiv\left(x_{A}^{\mu}-x_{B}^{\mu}\right)
$$

Is the displacement a contravariant 4-vector?
A. Yes
B. No
C. Umm...don't know how to tell
D. None of these.

Be ready to explain your answer.

The displacement between two events Δx^{μ} is a contravariant 4-vector.

Is $5 \Delta x^{\mu}$ also a 4 -vector?

A. Yes
B. No

