Virtual Clicker

https://pollev.com/dannycaballe980

 Notes for todayhttp://dannycaballero.info/phy482msu_s2020/notes/31slides.html

CHANGES TO SYLLABUS

- Pair project is cancelled. One additional homework problem per week.
- Homework: 40\% -> 50\%
- Individual Project: 20\% -> 25\%
- Quizzes: 20\% -> 25\%

Will still drop one homework assignment and quiz.
I will take into account the wildly-extenuated circumstances when assigning letter grades.

DEMO

Galilean relativity example courtesy of Jamiroquai

Standing on a moving walkway in the airport that is moving at $1 \mathrm{~m} / \mathrm{s}$ to the right, you toss a ball into the air. You observe the ball moving straight up and down.

I'm sitting on a bench watching your shenanigans. What do I have to do to make my physics match yours? That is, what do I have to do to reproduce all your measurements?
A. Add $1 \mathrm{~m} / \mathrm{s}$ to the left
B. Add $1 \mathrm{~m} / \mathrm{s}$ to the right
C. Subtract $1 \mathrm{~m} / \mathrm{s}$ to the right
D. Subtract $1 \mathrm{~m} / \mathrm{s}$ to the left
E. None or more than one of these

A rocket is moving to the right at speed $v=(3 / 4) c$, relative to Earth. On the front of the rocket is a headlight which emits a flash of light.

In the reference frame of a passenger on the rocket, the speed of the light flash is
A. c
B. $7 / 4 c$
C. $1 / 4 c$
D. None of these

A rocket is moving to the right at speed $v=(3 / 4) c$, relative to Earth. On the front of the rocket is a headlight which emits a flash of light.

According to a person at rest on the earth, the speed of the light flash is
A. c
B. $7 / 4 c$
C. $1 / 4 c$
D. None of these

A rocket is moving to the right at speed $v=(3 / 4) c$, relative to Earth. On the front of the rocket is a headlight which emits a flash of light.

According to a person moving toward the rocket at speed $(3 / 4) c$, relative to earth, the speed of the light flash is
A. c
B. $7 / 4 c$
C. $1 / 4 c$
D. None of these

Consider a S^{\prime} frame moving with a speed v in 1D with respect to a stationary frame S. Using your everyday intuition, write down the relationship between a position measurement x and x^{\prime}.

Be ready to explain why this makes sense to you.

The Galilean transformation between S^{\prime} and S is:

$$
x=x^{\prime}+v t
$$

The Lorentz transformation will introduce a γ, where do you think it goes? And why?

I'm in frame S, and you are in is in Frame S^{\prime}, which moves with speed V in the $+x$ direction.
An object moves in the S^{\prime} frame in the $+x$ direction with speed v_{x}^{\prime}. Do I measure its x component of velocity to be

$$
v_{x}=v_{x}^{\prime} ?
$$

A. Yes
B. No
C. ???

I'm in frame S, and you are in is in Frame S^{\prime}, which moves with speed V in the $+x$ direction.
An object moves in the S^{\prime} frame in the $+y$ direction with speed v_{y}^{\prime}. Do I measure its y component of velocity to be

$$
v_{y}=v_{y}^{\prime} ?
$$

A. Yes
B. No
C. ???

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when v is very small compared to c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when u^{\prime} is c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when v is c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

