The electric fields of two EM waves in vacuum are both described by:

$$
\mathbf{E}=E_{0} \sin (k x-\omega t) \hat{y}
$$

The "wave number" k of wave 1 is larger than that of wave 2 , $k_{1}>k_{2}$. Which wave has the larger frequency f ?
A. Wave 1
B. Wave 2
C. impossible to tell

For a wave on a 1d string that hits a boundary between 2 strings of different material we get,

$$
\begin{gathered}
\widetilde{f}(z<0)=\widetilde{A}_{I} e^{i\left(k_{1}\right) z-\omega t}+\widetilde{A}_{R} e^{i\left(-k_{1} z-\omega t\right)} \\
\widetilde{f}(z>0)=\widetilde{A}_{T} e^{i\left(k_{2}\right) z-\omega t}
\end{gathered}
$$ where continuity (BCs) give,

$$
\begin{aligned}
& \widetilde{A}_{R}=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right) \widetilde{A}_{I} \\
& \widetilde{A}_{T}=\left(\frac{2 k_{1}}{k_{1}+k_{2}}\right) \widetilde{A}_{I}
\end{aligned}
$$

Is the transmitted wave in phase with the incident wave?
A) Yes, always B) No, never C) Depends

For a wave on a 1d string that hits a boundary between 2 strings of different material we get,

$$
\begin{gathered}
\widetilde{f}(z<0)=\widetilde{A}_{I} e^{i\left(k_{1}\right) z-\omega t}+\widetilde{A}_{R} e^{i\left(-k_{1} z-\omega t\right)} \\
\widetilde{f}(z>0)=\widetilde{A}_{T} e^{i\left(k_{2}\right) z-\omega t}
\end{gathered}
$$ where continuity (BCs) give,

$$
\begin{aligned}
& \widetilde{A}_{R}=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right) \widetilde{A}_{I} \\
& \widetilde{A}_{T}=\left(\frac{2 k_{1}}{k_{1}+k_{2}}\right) \widetilde{A}_{I}
\end{aligned}
$$

Is the reflected wave in phase with the incident wave?
A) Yes, always B) No, never C) Depends

An electromagnetic plane wave propagates to the right. Four vertical antennas are labeled 1-4. 1, 2, and 3 lie in the $x-y$ plane. 1,2 , and 4 have the same x-coordinate, but antenna 4 is located further out in the z-direction. Rank the timeaveraged signals received by each antenna.
A. $1=2=3>4$
B. $3>2>1=4$
C. $1=2=4>3$
D. $1=2=3=4$
E. $3>1=2=4$

A point source of radiation emits power P_{0} isotropically (uniformly in all directions). A detector of area a_{d} is located a distance R away from the source. What is the power P_{d} received by the detector?
A. $\frac{P_{0}}{4 \pi R^{2}} a_{d}$
B. $P_{0} \frac{a_{d}^{2}}{R^{2}}$
C. $P_{0} \frac{a_{d}}{R}$
D. $\frac{P_{0}}{\pi R^{2}} a_{d}$

E. None of these

