I feel confident with one-dimensional waves:

A. Yes
B. Sort of
C. Not really
D. Nope

QUIZ 4 (FRIDAY FEB. 28)

- Maxwell Ampere + Poynting Vector
- Determine the electric and magnetic field in a situation where there is a displacement current
- Discuss the direction of the Poynting vector and how it relates to conservation of energy

PAPERS

- Due next Friday (Feb. 28) by 5pm (20\% of your grade BTW)

A function, $f(x, t)$, satisfies this PDE:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

Which of the following functions work?

$$
\begin{aligned}
& \text { A. } \sin (k(x-v t)) \\
& \text { B. } \exp (k(-x-v t)) \\
& \text { C. } a(x+v t)^{3} \\
& \text { D. All of these. } \\
& \text { E. None of these. }
\end{aligned}
$$

A "right moving" solution to the wave equation is:

$$
f_{R}(z, t)=A \cos (k z-\omega t+\delta)
$$

Which of these do you prefer for a "left moving" soln?

$$
\begin{aligned}
& \text { A. } f_{L}(z, t)=A \cos (k z+\omega t+\delta) \\
& \text { B. } f_{L}(z, t)=A \cos (k z+\omega t-\delta) \\
& \text { C. } f_{L}(z, t)=A \cos (-k z-\omega t+\delta) \\
& \text { D. } f_{L}(z, t)=A \cos (-k z-\omega t-\delta)
\end{aligned}
$$

E. more than one of these!
(Assume k, ω, δ are positive quantities)

Two different functions $f_{1}(x, t)$ and $f_{2}(x, t)$ are solutions of the wave equation.

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

Is $\left(A f_{1}+B f_{2}\right)$ also a solution of the wave equation?
A. Yes, always
B. No, never
C. Yes, sometimes depending on f_{1} and f_{2}

Two traveling waves 1 and 2 are described by the equations:

$$
\begin{gathered}
y_{1}(x, t)=2 \sin (2 x-t) \\
y_{2}(x, t)=4 \sin (x-0.8 t)
\end{gathered}
$$

All the numbers are in the appropriate $\mathrm{SI}(\mathrm{mks})$ units.
Which wave has the higher speed?
A. 1
B. 2
C. Both have the same speed

Two impulse waves are approaching each other, as shown. Which picture correctly shows the total wave when the two waves are passing through each other?

A solution to the wave equation is:

$$
f(z, t)=A \cos (k z-\omega t+\delta)
$$

- What is the speed of this wave?
- Which way is it moving?
- If δ is small (and >0), is this wave "delayed" or "advanced"?
- What is the frequency?
- The angular frequency?
- The wavelength?
- The wave number?

A solution to the wave equation is:

$$
f(z, t)=\operatorname{Re}\left[A e^{i(k z-\omega t+\delta)}\right]
$$

- What is the speed of this wave?
- Which way is it moving?
- If δ is small (and >0), is this wave "delayed" or "advanced"?
- What is the frequency?
- The angular frequency?
- The wavelength?
- The wave number?

A complex solution to the wave equation in 3D is:

$$
\widetilde{f}(\mathbf{r}, t)=\widetilde{A} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

- What is the speed of this wave?
- Which way is it moving?
- Why is there no δ ?
- What is the frequency?
- The angular frequency?
- The wavelength?
- The wave number?

