Same capacitor with $Q = Q_0 + \beta t$ on the positively charged plate. What is the magnitude of the magnetic field **B** halfway between the plates, at a radius r?

Consider the surface of an imaginary volume (dashed lines, at right) that partly encloses the left \xrightarrow{I} capacitor plate. For this closed surface, is the total flux of the current density, $\iint \mathbf{J} \cdot d\mathbf{A}$ positive, negative or zero?

At each location, we will evaluate the sign of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$. **At location 3**, the signs of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$ are:

- A. both zero
- B. both negative
- C. both positive
- D. $\partial \rho / \partial t$ is positive and $\nabla \cdot \mathbf{J}$ is negative
- E. $\partial \rho / \partial t$ is negative and $\nabla \cdot \mathbf{J}$ is positive

At each location, we will evaluate the sign of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$. **At location 2**, the signs of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$ are:

- A. both zero
- B. both negative
- C. both positive
- D. $\partial \rho / \partial t$ is positive and $\nabla \cdot \mathbf{J}$ is negative
- E. $\partial \rho / \partial t$ is negative and $\nabla \cdot \mathbf{J}$ is positive

At each location, we will evaluate the sign of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$. **At location 4**, the signs of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$ are:

- A. both zero
- B. both negative
- C. both positive
- D. $\partial \rho / \partial t$ is positive and $\nabla \cdot \mathbf{J}$ is negative
- E. $\partial \rho / \partial t$ is negative and $\nabla \cdot \mathbf{J}$ is positive

At each location, we will evaluate the sign of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$. **At location 1**, the signs of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$ are:

- A. both zero
- B. both negative
- C. both positive
- D. $\partial \rho / \partial t$ is positive and $\nabla \cdot \mathbf{J}$ is negative
- E. $\partial \rho / \partial t$ is negative and $\nabla \cdot \mathbf{J}$ is positive

At each location, we will evaluate the sign of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$. **At location 5**, the signs of $\partial \rho / \partial t$ and $\nabla \cdot \mathbf{J}$ are:

- A. both zero
- B. both negative
- C. both positive
- D. $\partial \rho / \partial t$ is positive and $\nabla \cdot \mathbf{J}$ is negative
- E. $\partial \rho / \partial t$ is negative and $\nabla \cdot \mathbf{J}$ is positive

imply about $abla \cdot \mathbf{J}$ at points 2 and 4 in the diagram?

A. The remain unchangedB. They swap signsC. They become zeroD. ???

the signs of $(\nabla \times \mathbf{B})_x$ at locations 1, 3, and 5?

- A. All positive
- B. All negative
- C. Positive at 1 and 5, zero at 3
- D. Negative at 1 and 5, zero at 3
- E. Something else

A pair of capacitor plates are charging up due to a current *I*. The plates have an area $A = \pi R^2$. Use the Maxwell-Ampere Law to find

the magnetic field at the point "x" in the diagram as distance *r* from the wire.

A.
$$B = \frac{\mu_0 I}{4\pi r}$$

B. $B = \frac{\mu_0 I}{2\pi r}$
C. $B = \frac{\mu_0 I}{4\pi r^2}$
D. $B = \frac{\mu_0 I}{2\pi r^2}$

E. Something much more complicated

The plates have an area $A = \pi R^2$. Use the Gauss' Law to find the electric field between the plates, answer in terms of σ the charge density on the plates.

A. $E = \sigma/\varepsilon_0$ B. $E = -\sigma/\varepsilon_0$ C. $E = \sigma/(\varepsilon_0 \pi R^2)$ D. $E = \sigma \pi R^2 / \varepsilon_0$ E. Something much more complicated

A. $d\sigma/dt = I$ B. $\pi R^2 d\sigma/dt = I$ C. $d\sigma/dt = \pi R^2 I$ D. Something else We found the relationship between the current and the change of the charge density was: $\pi R^2 d\sigma/dt = I$. Determine the rate of change of the electric field between the plates, $d\mathbf{E}/dt$.

A. $\sigma/\varepsilon_0 \hat{x}$ B. $I/(\pi R^2 \varepsilon_0) \hat{x}$ C. $-I/(\pi R^2 \varepsilon_0) \hat{x}$ D. $I/(2\pi R \varepsilon_0) \hat{x}$ E. $-I/(2\pi R \varepsilon_0) \hat{x}$

Use the Maxwell-Ampere Law to derive a formula for the manetic at a distance r < R from the center of the plate in terms of the current, *I*.

A.
$$B = \frac{\mu_0 I}{2\pi r}$$

B. $B = \frac{\mu_0 I r}{2\pi R^2}$
C. $B = \frac{\mu_0 I}{4\pi r}$
D. $B = \frac{\mu_0 I r}{4\pi R^2}$

E. Something else entirely

Use the Maxwell-Ampere Law to derive a formula for the magnetic at a distance r > R from the center of the plate in terms of the current, I.

A.
$$B = \frac{\mu_0 I}{2\pi r}$$

B. $B = \frac{\mu_0 I r}{2\pi R^2}$
C. 0

D. Something else entirely