What is $|2+i|$?

A. 1
B. $\sqrt{3}$
C. 5
D. $\sqrt{5}$
E. Something else!

What is $(1+i)^{2} /(1-i)$?
A. $e^{i \pi / 4}$
B. $\sqrt{2} e^{i \pi / 4}$
C. $e^{i 3 \pi / 4}$
D. $\sqrt{2} e^{i 3 \pi / 4}$
E. Something else!

Which point below best represents $4 e^{i 3 \pi / 4}$ on the complex plane?

What is $\operatorname{Re}\left[\frac{e^{i \omega t}}{1+i}\right]$?
A. $\frac{1}{\sqrt{2}} \cos (\omega t+\pi / 4)$
B. $\frac{1}{\sqrt{2}} \cos (\omega t-\pi / 4)$
C. $\frac{1}{2} \cos (\omega t+\pi / 4)$
D. $\frac{1}{2} \cos (\omega t-\pi / 4)$
E. Something else

A resistor (R) and an inductor (L) are in parallel. What is the effective impedance, $Z_{e f f}$ across these elements?

$$
\begin{aligned}
& \text { A. } R+L \\
& \text { B. } R+i \omega L \\
& \text { C. } 1 /(R+i \omega L) \\
& \text { D. } \frac{1}{1 / R-i /(\omega L)} \\
& \text { E. Something else? }
\end{aligned}
$$

What is the total impedance of this circuit, $Z_{\text {total }}$?

$$
\begin{aligned}
& \text { A. } R+i\left(\omega L+\frac{1}{\omega C}\right) \\
& \text { B. } R+i\left(\omega L-\frac{1}{\omega C}\right) \\
& \text { C. } \frac{1}{R}+\frac{1}{i \omega L}+i \omega C \\
& \text { D. } \frac{1}{\frac{1}{R}+\frac{1}{i \omega L}+i \omega C} \\
& \text { E. None of these }
\end{aligned}
$$

AC voltage V and current I vs time t are as shown:

The graph shows that..
A. I leads V (I peaks before V peaks)
B. I lags V (I peaks after V peaks)
C. Neither

