The switch is closed at $t=0$. What can you say about

$$
I(t=0+) ?
$$

A. Zero
B. V_{0} / R
C. V_{0} / L
D. Something else!
E. ???

The switch is closed at $t=0$. Which graph best shows $I(t)$ through the resistor?
E) None of these (they all have a serious error!)

The switch is closed at $t=0$. What can you say about the magnitude of
ΔV (across the inductor) at ($t=0+$)?
A. Zero
B. V_{0}

C. L
D. Something else!
E. ???

The complex exponential: $e^{i \omega t}$ is useful in calculating properties of many time-dependent equations. According to

Euler, we can also write this function as:
A. $\cos (i \omega t)+\sin (i \omega t)$
B. $\sin (\omega t)+i \cos (\omega t)$
C. $\cos (\omega t)+i \sin (\omega t)$
D. MORE than one of these is correct
E. None of these is correct!

What is $|2+i|$?

A. 1
B. $\sqrt{3}$
C. 5
D. $\sqrt{5}$
E. Something else!

What is $(1+i)^{2} /(1-i)$?
A. $e^{i \pi / 4}$
B. $\sqrt{2} e^{i \pi / 4}$
C. $e^{i 3 \pi / 4}$
D. $\sqrt{2} e^{i 3 \pi / 4}$
E. Something else!

For the RL circuit with driving voltage of $V(t)=V_{0} \cos (\omega t)$, we found a solution for the current as a function of time,

$$
\text { with } I=0 \text { at } t=0,
$$

$$
I(t)=a \cos (\omega t+\phi)-a \cos (\phi) e^{-R t / L}
$$

where $a=\frac{V_{0}}{\sqrt{R^{2}+L^{2} \omega^{2}}}$ and $\phi=\tan ^{-1}(-L \omega / R)$. What happens to the current when $\omega \rightarrow \infty$?
A. Current is essentially zero, for all time
B. Current dies off completely, eventually goes to zero
C. Eventually, current is constant, V_{0} / R
D. It depends
E. ???

