The switch is closed at t = 0. What can you say about I(t = 0+)?

A. Zero B. V_0/R C. V_0/L D. Something else! E. ???

The switch is closed at t = 0. Which graph best shows I(t) through the resistor?

E) None of these (they all have a serious error!)

The switch is closed at t = 0. What can you say about the magnitude of ΔV (across the inductor) at (t = 0+)?

The complex exponential: $e^{i\omega t}$ is useful in calculating properties of many time-dependent equations. According to Euler, we can also write this function as:

> A. $\cos(i\omega t) + \sin(i\omega t)$ B. $\sin(\omega t) + i \cos(\omega t)$ C. $\cos(\omega t) + i \sin(\omega t)$ D. MORE than one of these is correct E. None of these is correct!

What is |2 + i|? A. 1 B. $\sqrt{3}$ C. 5 D. $\sqrt{5}$ E. Something else!

What is $(1 + i)^2/(1 - i)$? A. $e^{i\pi/4}$ B. $\sqrt{2}e^{i\pi/4}$ C. $e^{i3\pi/4}$ D. $\sqrt{2}e^{i3\pi/4}$ E. Something else!

For the RL circuit with driving voltage of $V(t) = V_0 \cos(\omega t)$, we found a solution for the current as a function of time, with I = 0 at t = 0,

 $I(t) = a\cos(\omega t + \phi) - a\cos(\phi)e^{-Rt/L}$ where $a = \frac{V_0}{\sqrt{R^2 + L^2\omega^2}}$ and $\phi = \tan^{-1}(-L\omega/R)$. What happens to the current when $\omega \to \infty$?

A. Current is essentially zero, for all time B. Current dies off completely, eventually goes to zero C. Eventually, current is constant, V_0/R D. It depends E. ???