You have a physical dipole, +q and -q a finite distance d apart. When can you use the expression:

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{\Re_i}$$

A. This is an exact expression everywhere.
B. It's valid for large r
C. It's valid for small r
D. No idea...

ANNOUNCEMENTS

- Homework 1 due today at 5pm (using gradescope.com)
 - Gradescope will let you turn in until Sunday at 5pm
 - Last two questions turn in on Github
- Quiz #1 Next Friday
 - Last 25 minutes of class
 - No cheat sheets; all formulas will be provided
 - Solve a Gauss' Law Problem with spherical symmetry
 - Sketch a graph of the resulting electric field

Which charge distributions below produce a potential that looks like $\frac{C}{r^2}$ when you are far away?

E) None of these, or more than one of these!

(For any which you did not select, how DO they behave at large r?)

A proton (q = +e) is released from rest in a uniform \mathbf{E} and uniform \mathbf{B} . \mathbf{E} points up, \mathbf{B} points into the page. Which of the paths will the proton initially follow?

E. It will remain stationary

A proton (speed v) enters a region of uniform **B**. v makes an angle θ with **B**. What is the subsequent path of the proton?

- A. Helical
- B. Straight line
- C. Circular motion, \bot to page. (plane of circle is \bot to B)
- D. Circular motion, \perp to page. (plane of circle at angle θ w.r.t. **B**)
- E. Impossible. v should always be \bot to B

Current *I* flows down a wire (length *L*) with a square cross section (side *a*). If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density *J*?

A.
$$J = I/a^2$$

B. $J = I/a$
C. $J = I/4a$
D. $J = a^2 I$
E. None of the above

To find the magnetic field **B** at P due to a current-carrying wire we use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{\Re}}}{\mathbf{\Re}^2}$$

In the figure, with $d\mathbf{l}$ shown, which purple vector best represents \Re ?

What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P, by red)$ B. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ into page C. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ out of page D. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P, by red)$ E. Something else!! Consider the B-field a distance z from a current sheet (flowing in the +x-direction) in the z = 0 plane. The B-field has:

A. y-component onlyB. z-component onlyC. y and z-componentsD. x, y, and z-componentsE. Other

Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field **B** obeys:

$$\int_{S} (\nabla \times \mathbf{B}) \cdot dA = \oint_{L} \mathbf{B} \cdot d\mathbf{I}$$

Does Stoke's Theorem apply for any surface S bounded by a perimeter L, even this balloon-shaped surface S?

A. Yes B. No C. Sometimes Much like Gauss's Law, Ampere's Law is always true (for magnetostatics), but only useful when there's sufficient symmetry to "pull B out" of the integral.

So we need to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can **B** point radially (i.e., in the \hat{s} direction)?

A. Yes B. No C. ??? Continuing to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can ${f B}$ depend on z or ϕ ?

A. Yes B. No C. ???

Finalizing the argument for what ${\boldsymbol{B}}$ looks like and what it can depend on.

For the case of an infinitely long wire, can **B** have a \hat{z} component?

A. Yes B. No C. ??? Gauss' Law for magnetism, $\nabla \cdot \mathbf{B} = 0$ suggests we can generate a potential for \mathbf{B} . What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

A.
$$\mathbf{B} = \nabla \Phi$$

B. $\mathbf{B} = \nabla \times \Phi$
C. $\mathbf{B} = \nabla \cdot \mathbf{A}$
D. $\mathbf{B} = \nabla \times \mathbf{A}$
E. Something else?!

We can compute ${\bf A}$ using the following integral:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$$

Can you calculate that integral using spherical coordinates?

A. Yes, no problem

B. Yes, r' can be in spherical, but J still needs to be in Cartesian components
C. No.

Which ways produce a dipole field at large distances?

A. None of these

B. All three

C. 1 only

D. 1 and 2 only

E. 1 and 3 only

