You have a physical dipole, $+q$ and $-q$ a finite distance d apart. When can you use the expression:

$$
V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\mathfrak{R}_{i}}
$$

A. This is an exact expression everywhere.
B. It's valid for large r
C. It's valid for small r
D. No idea...

ANNOUNCEMENTS

- Homework 1 due today at 5 pm (using gradescope.com)
- Gradescope will let you turn in until Sunday at 5pm
- Last two questions turn in on Github
- Quiz \#1 - Next Friday
- Last 25 minutes of class
- No cheat sheets; all formulas will be provided
- Solve a Gauss' Law Problem with spherical symmetry
- Sketch a graph of the resulting electric field

Which charge distributions below produce a potential that looks like $\frac{C}{r^{2}}$ when you are far away?

E) None of these, or more than one of these!
(For any which you did not select, how DO they behave at large r?)

A proton $(q=+e)$ is released from rest in a uniform \mathbf{E} and uniform B. E points up, B points into the page. Which of the paths will the proton initially follow?

E. It will remain stationary

A proton (speed v) enters a region of uniform B. v makes an angle θ with \mathbf{B}. What is the subsequent path of the proton?

A. Helical
B. Straight line
C. Circular motion, \perp to page. (plane of circle is \perp to \mathbf{B})
D. Circular motion, \perp to page. (plane of circle at angle θ w.r.t. B)
E. Impossible. \mathbf{v} should always be \perp to \mathbf{B}

Current I flows down a wire (length L) with a square cross section (side a). If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density J ?

$$
\begin{aligned}
& \text { A. } J=I / a^{2} \\
& \text { B. } J=I / a \\
& \text { C. } J=I / 4 a \\
& \text { D. } J=a^{2} I \\
& \text { E. None of the above }
\end{aligned}
$$

To find the magnetic field \mathbf{B} at P due to a current-carrying wire we use the Biot-Savart law,

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}
$$

In the figure, with $d \mathbf{l}$ shown, which purple vector best represents \mathfrak{R} ?

E) None of these!

What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d \mathbf{B}(P)$ generated JUST by the segment of current $d \mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d \mathbf{B}(P$, by red $)$
B. $\mathbf{B}(P)$ into page, $d \mathbf{B}(P$, by red) into page
C. $\mathbf{B}(P)$ into page, $d \mathbf{B}(P$, by red) out of page
D. $\mathbf{B}(P)$ complicated, ditto for $d \mathbf{B}(P$, by red)
E. Something else!!

Consider the B -field a distance z from a current sheet (flowing in the $+x$-direction) in the $z=0$ plane. The B-field has:

A. y-component only
B. z-component only
C. y and z-components
D. x, y, and z-components
E. Other

Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field \mathbf{B} obeys:

$$
\int_{S}(\nabla \times \mathbf{B}) \cdot d A=\oint_{L} \mathbf{B} \cdot d \mathbf{l}
$$

Does Stoke's Theorem apply for any surface S bounded by a perimeter L, even this balloon-shaped surface S ?

A. Yes
B. No
C. Sometimes

Much like Gauss's Law, Ampere's Law is always true (for magnetostatics), but only useful when there's sufficient symmetry to "pull B out" of the integral.

So we need to build an argument for what \mathbf{B}
 looks like and what it can depend on.

For the case of an infinitely long wire, can \mathbf{B} point radially (i.e., in the \hat{s} direction)?

A. Yes
B. No
C. ???

Continuing to build an argument for what B looks like and what it can depend on.

For the case of an infinitely long wire, can \mathbf{B} depend on z or ϕ ?
A. Yes
B. No
C. ???

Finalizing the argument for what \mathbf{B} looks like and what it can depend on.

For the case of an infinitely long wire, can \mathbf{B} have a \hat{z} component?
A. Yes
B. No
C. ???

Gauss' Law for magnetism, $\nabla \cdot \mathbf{B}=0$ suggests we can generate a potential for \mathbf{B}. What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

$$
\begin{aligned}
& \text { A. } \mathbf{B}=\nabla \Phi \\
& \text { B. } \mathbf{B}=\nabla \times \Phi \\
& \text { C. } \mathbf{B}=\nabla \cdot \mathbf{A} \\
& \text { D. } \mathbf{B}=\nabla \times \mathbf{A} \\
& \text { E. Something else?! }
\end{aligned}
$$

We can compute \mathbf{A} using the following integral:

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\mathfrak{R}} d \tau^{\prime}
$$

Can you calculate that integral using spherical coordinates?
A. Yes, no problem
B. Yes, r^{\prime} can be in spherical, but \mathbf{J} still needs to be in Cartesian components
C. No.

Two magnetic dipoles m_{1} and m_{2} (equal
 in magnitude) are oriented in three different ways.

Which ways produce a dipole field at large distances?
A. None of these
B. All three
C. 1 only
D. 1 and 2 only
E. 1 and 3 only

