What is the value of:
 $\int_{-\infty}^{\infty} x^{2} \delta(x-2) d x$

A. 0
B. 2
C. 4
D. ∞
E. Something else

A point charge (q) is located at position \mathbf{R}, as shown. What is $\rho(\mathbf{r})$, the charge density in all space?

$$
\begin{aligned}
& \text { A. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{R}) \\
& \text { B. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{r}) \\
& \text { C. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{R}-\mathbf{r}) \\
& \text { D. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{r}-\mathbf{R})
\end{aligned}
$$

E. Something else??
origin

An electric dipole ($+q$ and $-q$, small distance d apart) sits centered in a Gaussian sphere.

What can you say about the flux of \mathbf{E} through the sphere, and $|\mathbf{E}|$ on the sphere?

A. $\operatorname{Flux}=0, E=0$ everywhere on sphere surface
B. Flux $=0$, E need not be zero everywhere on sphere
C. Flux is not zero, $\mathrm{E}=0$ everywhere on sphere
D. Flux is not zero, E need not be zero...

Which of the following two fields has zero curl?

Can superposition be applied to electric potential, V ?

$$
V_{t o t} \stackrel{?}{=} \sum_{i} V_{i}=V_{1}+V_{2}+V_{3}+\ldots
$$

A. Yes
B. No
C. Sometimes

Could this be a plot of $|\mathbf{E}(r)|$? Or $V(r)$? (for SOME physical situation?)
A. Could be $E(r)$, or $V(r)$
B. Could be $E(r)$, but can't be $V(r)$
C. Can't be $E(r)$, could be $V(r)$
D. Can't be either
E. ???

A point charge $+q$ sits outside a solid neutral conducting copper sphere of radius A. The charge q is a distance $r>A$ from the center, on the right side. What is the E-field at the center of the sphere? (Assume equilibrium situation).

$$
\begin{aligned}
& \text { A. }|E|=k q / r^{2} \text {, to left } \\
& \text { B. } k q / r^{2}>|E|>0 \text {, to left } \\
& \text { C. }|E|>0 \text {, to right } \\
& \text { D. } E=0 \\
& \text { E. None of these }
\end{aligned}
$$

A neutral copper sphere has a spherical hollow in the center. A charge $+q$ is placed in the center of the hollow. What is the total charge on the outside surface of the copper sphere?
(Assume Electrostatic equilibrium.)

A. Zero
B. $-q$
C. $+q$
D. $0<q_{\text {outer }}<+q$
E. $-q<q_{\text {outer }}<0$

True or False: The electric field, E(r), in some region of space is zero, thus the electric potential, $V(\mathbf{r})$, in that same region of space is zero.
A. True
B. False

True or False: The electric potential, $V(\mathbf{r})$, in some region of space is zero, thus the electric field, $\mathbf{E}(\mathbf{r})$, in that same region of space is zero.
A. True
B. False

The general solution for the electric potential in spherical coordinates with azimuthal symmetry (no ϕ dependence) is:

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Consider a metal sphere (constant potential in and on the sphere, remember). Which terms in the sum vanish outside the sphere? (Recall: $V \rightarrow 0$ as $r \rightarrow \infty$)
A. All the A_{l} 's
B. All the A_{l} 's except A_{0}
C. All the B_{l} 's
D. All the B_{l} 's except B_{0}
E. Something else

$$
\mathbf{p}=\sum_{i} q_{i} \mathbf{r}_{i}
$$

What is the dipole moment of this system?
(BTW, it is NOT overall neutral!)
A. q d
B. $2 q \mathbf{d}$
C. $\frac{3}{2} q \mathbf{d}$
D. $3 q \mathbf{d}$
E. Someting else (or not defined)

You have a physical dipole, $+q$ and $-q$ a finite distance d apart. When can you use the expression:

$$
V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}
$$

A. This is an exact expression everywhere.
B. It's valid for large r
C. It's valid for small r
D. No idea...

