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Complex-valued functions are commonly used to solve differential equations for one-dimensional
motion of a harmonic oscillator with linear damping, a sinusoidal driving force, or both. However,
the usual approach treats complex functions as an algebraic shortcut, neglecting geometrical
representations of those functions and discarding imaginary parts. This article emphasizes the
benefit of using diagrams in the complex plane for such systems, in order to build intuition about
harmonic motion and promote spatial reasoning and the use of varied representations. Examples
include the analysis of exact time sequences of various kinematic events in damped harmonic
motion, sense-making about the phase difference between a driving force and the resulting motion,
and understanding the discrepancy between the resonant frequency and the natural undamped
frequency for forced, damped harmonic motion. The approach is suitable for supporting instruction
in undergraduate upper-division classical mechanics. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4923439]

I. INTRODUCTION

Instruction on oscillations often employs complex-valued
functions like Aeiðxt"/Þ to find position vs time solutions for
simple, damped, and driven oscillatory systems. In upper-
division courses on classical mechanics, very seldom do
textbooks begin to explore geometrical interpretations of
these complex functions by depicting solutions in the com-
plex plane, or further use these constructions as a basis for
analysis. In introductory calculus-based physics instruction
on ac circuits, by contrast, it is common to show a “phasor”
representation of oscillatory quantities (i.e., showing the
quantities as arrows rotating in an abstract plane). Even these
treatments, however, only scratch the surface of what can
be discovered through an intellectual inhabitation of the
complex plane. In this article, I show some of the insight
into the mathematics of oscillation that can be gained
through a geometrical perspective. In this way, the geometri-
cal approach can be seen as complementary to algebraic
reasoning and physical reasoning.

The work presented here is not a systematic empirical
study of student learning, though it was developed through
the experience of teaching classical mechanics over several
years. At present, there have been no published empirical
studies reporting specifically on student difficulties with the
topic of damped and forced harmonic motion. The ideas of
this article are presented for two purposes: (1) to enhance the
physics education community’s repertoire for teaching oscil-
lations, and (2) to serve as a reference, by providing instruc-
tional context, for future formal empirical studies in physics
education research. In particular, the addition of opportuni-
ties for students and instructors to engage with the mathe-
matics of oscillations through time-dependent geometrical
forms lays essential groundwork for embodied-action stud-
ies, which is a field of rich research opportunities in STEM
learning.1

Physics education research studies on the use of multiple
representations in instruction agree generally that using mul-
tiple representations in instruction has positive outcomes2,3

for students, especially when their use is well-coordinated4

and goal-directed.5 Most such studies have been at the

introductory level, though some instructional programs have
aimed to extend the use of multiple representations (along
with other basic reform characteristics like increased interac-
tivity, metacognition, etc.) into the upper division, and have
produced some research indicating that the reforms were
called for and were positively effective.6–10 It is therefore a
premise of this article that the extension of typical treatments
of topics to include rigorous reasoning using alternative rep-
resentations is likely to contribute positively to the quality of
instruction.

II. REVIEW OF TEXTBOOKS’ USE OF THE
COMPLEX PLANE FOR INSTRUCTION ON
OSCILLATIONS

Since there is an existing tradition in physics education of
treating oscillations with complex numbers and arrow depic-
tions of phasors, I review some common treatments of the
subject to show to what degree oscillations have been
depicted in the complex plane, especially from the point of
view of upper-division (or higher) classical mechanics.

In a review of 18 textbooks on classical mechanics, I
found very few depictions of complex-valued kinematic
variables or forces in the complex plane. For example, in one
currently popular text,11 complex exponential solutions for
simple harmonic motion and for a generic second-order
linear inhomogeneous equation are treated in an Appendix
rather than in the chapter on harmonic motion. This
Appendix also includes a diagram of a phase angle located in
a triangle, but otherwise does not depict complex solutions.
Another popular text12 shows complex exponential solutions
for simple harmonic motion, including a diagram of the
phasor representing the complex position ~xðtÞ at an arbitrary
instant in time. It also shows complex exponential solutions
for damped, unforced harmonic motion, and for damped,
forced harmonic motion, but only in algebraic form, except
for a triangle13 that illustrates the relationship between the
phase angle and various frequency-type quantities.

I also reviewed the use of the complex plane for describ-
ing and explaining oscillations in two commonly used intro-
ductory calculus-based physics texts.14 In both, no explicit
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mention is made of complex numbers per se; however, both
texts also show “phasors” for the treatment of ac circuits,
especially in the case of sinusoidally driven RLC circuits.
The phasors are not explained in terms of complex numbers
but rather through analogy to the relationship between uni-
form circular motion and simple harmonic motion. As might
be expected, these introductory treatments do not address
fine quantitative issues relating to timing, phase, and driving
frequency.

III. SCOPE OF GEOMETRIC REASONING IN THE
COMPLEX PLANE

The following approach to understanding oscillations
emphasizes graphing complex functions of time in the com-
plex plane using an arrow representation. These complex
functions are determined through some algebraic work and
then graphed in preparation for geometric reasoning.

All systems considered here consist of at least a mass con-
nected to an ideal spring that is fixed to a wall. The spring
constant is never varied. The damping is exclusively linear
(i.e., drag force proportional to velocity, or Fdrag ¼ "bv).
Further, this damping is restricted to under-damped rather
than critically damped or over-damped conditions, but the
damping is non-negligible. For “forced” systems, both
undamped and underdamped systems are considered, and the
driving force is sinusoidal. In the case of undamped, forced
harmonic motion, the driving frequency is any frequency
except the natural undamped frequency.

The following analysis is organized around three
questions:

Question 1:
In underdamped harmonic motion, by what extra-algebraic
means can we know when exactly an oscillator released
from rest (a) has maximum speed and (b) passes through
equilibrium, in relation to the lapsing of one-quarter
period?
Question 2:
In forced, damped harmonic motion, what sense can we
make of the relationship between the driving frequency and
the phase angle /ðxÞ between the driving force and the
resulting motion?
Question 3:
In forced, damped harmonic motion, why does resonance
happen at a frequency that is less than the undamped, natu-
ral frequency of motion?

IV. UNDERDAMPED HARMONIC MOTION

When linear damping is introduced to a simple harmonic
oscillator, we try a solution of the form ~xðtÞ ¼ Aeft"i/,
anticipating that if the “frequency” f has nonzero real and
imaginary parts, the solution will have corresponding expo-
nential decay and sinusoidal factors, respectively. As with
simple harmonic motion, time derivatives effectively multi-
ply the original function by the complex exponent f, so that
_~x ¼ f~x and €~x ¼ f _~x ¼ f2~x. Geometrically, this multiplication
results in a change in amplitude and phase. To determine the
extent of the phase-shift aspect of this multiplication, we

substitute €~x ¼ f _~x ¼ f2~x into the equation of motion and
find that

f ¼ "b

2m
6i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
" b

2m

" #2
s

¼ "c6i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 " c2

q

¼ "c6ixd; (1)

with c ¼ b=2m and xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 " c2
p

. These two solutions for
f differ by the sign of the imaginary component, which is not
physically distinguishable, so we can proceed using
f ¼ "cþ ixd.

Taking the absolute magnitude gives jfj ¼ j"cþ ixdj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ x2

d

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ðx2

0 " c2Þ
p

¼ x0, which means that

the complex frequency f has the same magnitude as the orig-
inal undamped frequency x0. Noticing that the phase angle
of f must be between p=2 and p (because of the positive
imaginary component and the negative real component), we
can rewrite f in polar form as f ¼ x0eiðp=2þdÞ, giving

€~x ¼ f _~x ¼ x0ei p
2þdð Þ _~x ¼ f2~x ¼ x2

0ei 2 p
2þdð Þ½ '~x: (2)

Geometrically, each time derivative results in a counter-
clockwise phase shift of p=2þ d, where

d ¼ tan"1 c
xd

" #
¼ tan"1 cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0 " c2

p
" #

; (3)

as is apparent from Fig. 1(a). Note that in the absence of
damping, d approaches zero and the angle between adjacent
arrows approaches p=2, yielding a diagram for the case of
simple harmonic motion.

Figure 1(a) shows the f plane, where locations represent
complex frequencies. The complex frequency f is shown in
order to illustrate the phase angle that separates the complex
kinematic variables in Fig. 1(b). The relative phase angles of
position, velocity, and acceleration are constant, so the three
of them can be understood as forming a rigid object. If this
rigid object is modeled with pipe cleaners, for example, then
the manipulative has the advantage of being posable, so the
relative phase angle can be adjusted from one scenario to the
next (if the damping constant is adjusted) while being held
in a stable arrangement during the phase rotation of each
scenario. Note also, however, that the complex kinematic
variables also decay exponentially in magnitude over
time, which would not be represented well with such a
manipulative.

Figures 2(a)–2(f) show the phase angles of the kinematic
variables at several key instants during damped harmonic
motion. In Fig. 2(a), the phase angles are oriented to give
zero real velocity, representing the oscillator starting from
rest. This situation may already present a puzzle to students:
How can the observable position xðtÞ be maximum if the
complex position ~xðtÞ is not entirely real? If students can be
led to consider this puzzle, a good opportunity arises for
them to recognize the true definition of extremum in terms
of zero derivative and to reconcile this understanding with
the exponential decay of the magnitude of ~xðtÞ. By this path,
students may come to realize that the real projection xðtÞ can
be, and is, maximized before ~xðtÞ aligns with the real axis,
which is shown in Fig. 2(b). Students can also be invited to
wonder how the instant in Fig. 2(b) corresponds to a graph
of xðtÞ in relation to the envelope of exponential decay (they
are mutually tangent), or to the observable motion in a lab
(there is no corresponding special event). In Fig. 2(c), the
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real part of the acceleration is zero, corresponding to an
instant of maximum speed. Figure 2(d) represents the passage
of one quarter period after release from rest. In Fig. 2(e), the
real part of position is zero, so the oscillator has reached the
equilibrium position. By comparing panels (c)–(e) in Fig. 2
we have an answer to Question 1: The instant of maximum
speed occurs before one quarter period, and the instant of
passing the equilibrium position occurs after one quarter pe-
riod, by the same interval of time. This is seen by noting that
the phase angle difference between panels (c) and (d) is the
same as between panels (d) and (e) and remembering that the
phase angles advance at a constant rate. Figure 2(f) shows
the beginning of the next half-cycle, in which the pattern
from (a)–(e) repeats.

Figure 3 shows graphs of the real components of position
and velocity as functions of time. The instants of maximum

speed and passing through the equilibrium position are
marked to show the results from the geometric argument
presented above.

There are good reasons to suppose that it is helpful for
mathematical understanding to represent time-dependent
kinematic variables and forces in oscillation as projections
of objects that themselves form a rigid structure. Sfard15

explains that there is a natural interplay in mathematical
thinking and problem-solving between “operational and
structural versions of the same mathematical ideas” (p. 28).
The structural, or more object-like, version is more useful
during a kind of cognitive “look-up” process, in which many
characteristics of the idea are apprehended quickly and used
to judge whether the operational or procedural aspects are
worth recalling and expanding into the conscious awareness.
From the vantage of experimental psychology, Schwartz and

Fig. 2. Phase angles for complex position (blue dots), velocity (green small dashes), and acceleration (red large dashes) for six different instants during damped
harmonic motion, in chronological order. (a) The oscillator is released from rest at a non-equilibrium position; (b) the complex position is purely real; (c) the
acceleration is purely imaginary, so the oscillator has achieved maximum speed; (d) one quarter period has elapsed since release; (e) the oscillator passes
through the equilibrium position; (f) one half period has elapsed, at which time the sequence in parts (a)–(e) repeats.

Fig. 1. (a) The zeta plane, where complex frequencies lie. The phase angle of f is p=2þ d. Both roots fþ and f" are shown, but f" is discarded. (b) The result-
ing phase angles for position, velocity, and acceleration at some arbitrary instant during the motion, which involves rotation at constant angular frequency xd

and exponential decay of the magnitudes in time. Only the phase angles are shown; the magnitude information is omitted.
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Black showed16 the natural back-and-forth between thinking
in terms of rules of procedure and in terms of depictive mod-
els that people do when either becomes more efficient than
the other for problem-solving. Thus, we can expect the
complex-plane structures shown in Fig. 1 and later figures to
serve the same kinds of functions for students when thinking
about oscillations, in relation to other rule-based or proce-
dural knowledge, like computing new algebraic expressions.

Visualization of the posable phase angle structure of the
complex kinematic variables as shown in Fig. 2 can provide a
geometric schema with which one can make various infer-
ences relatively quickly, especially when used in conjunction
with certain basic algebraic results. For instance, if the damp-
ing constant were increased, how would the graphs in Fig. 3
change? The angles separating position, velocity, and acceler-
ation in Fig. 2 would spread while remaining equal to each
other, and the rate of rotation of the structure would decrease.
Thus, the graphs in Fig. 3 would be extended in time, and the
time differences between the instants of zero position, quarter
period, and maximum speed would increase in greater pro-
portion than the increase in period, because the time disparity
would cover a greater fraction of the cycle. Of course, under-
standing why the phase angle structure is what it is does
require some basis of algebraic reasoning, as least as it has
been presented here. Thus, the example here illustrates the
benefit not of replacing one kind of reasoning with another
but of strategic coordination of multiple lines of reasoning.

V. POSITION AMPLITUDE A AS PARAMETER AND
DRIVING FORCE AMPLITUDE F AS FUNCTION

Typically, the sinusoidal driving force FdriverðtÞ ¼
F0 cos xt is modeled as having an amplitude of driving force
that is an independently controlled parameter F0. An alterna-
tive perspective of the relationship between driving force
and position in forced oscillations, whether undamped or
damped, is to imagine that the force amplitude F0 is a de-
pendent variable, not a fixed parameter (so, henceforth
denoted just F, for brevity), while the position amplitude A is

fixed, not variable (so, henceforth denoted A0). In an electri-
cal system, it is easy to imagine holding a fixed amplitude V0

for a driving time-dependent voltage ~VðtÞ ¼ V0eixt and
measuring the frequency-dependent response of, say, the
voltage across a capacitor; however, for a mechanical sys-
tem, in which we imagine the time-varying force as exerted
by contact, the force amplitude of that oscillation might be
harder to control directly. One can imagine instead that the
oscillation is visually monitored so that the force amplitude
is adjusted to achieve a set position amplitude A0.

When the displacement amplitude is conceived as a func-
tion of frequency x and the force parameter F0, steady-state
oscillations have an amplitude given by

A xð Þ ¼
F0=mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cxð Þ2 þ x2
0 " x2

$ %2
q : (4)

In the case of fixed displacement amplitude A0 and variable
force amplitude FðxÞ, the resonant condition is defined as
that driving frequency that requires the least force amplitude
F. It is apparent from Eq. (4) that F has a functional depend-
ence on x that is the multiplicative inverse of that for the
variable amplitude AðxÞ, namely

FðxÞ ¼ mA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2cxÞ2 þ ðx2

0 " x2Þ2
q

: (5)

While AðxÞ (with fixed F0) is some finite value at x ¼ 0,
grows to a large finite value at x ¼ xr , and approaches zero
as x!1, FðxÞ is some finite value at x ¼ 0, shrinks to a
relatively small finite value at x ¼ xr, and approaches infin-
ity as x!1 (see the top part of Fig. 8). This perspective,
with fixed position amplitude A0 and therefore fixed spring
force amplitude j ~Fspringj ¼ mx2

0A0, is used in Secs. VI and
VII to explore the geometric relationships among complex
force phasors for variable frequency x:

VI. UNDAMPED FORCED HARMONIC MOTION

If the damping is removed from the oscillator, and a sinu-
soidal driving force is applied, there is a steady-state sinusoi-
dal motion of the system at the driving frequency with a phase
difference between the force and the position of either 0 or p
(see Fig. 4). The depiction of phasors in the complex plane to
represent the forces helps to explain why the solution makes
sense in terms of the same sort of vector-based reasoning that
students are expected to do in introductory mechanics.

Newton’s second law gives ~Fspring þ ~FdriverðtÞ ¼ R ~F
¼ m€~x , which in this example has the form "k~x
þFeixt ¼ m€~x . Trying a steady-state phasor solution ~xðtÞ
¼ A0eiðxt"/Þ yields the relation F ¼ mðx2

0 " x2ÞA0e"i/.
Every part of the equation is real except possibly for e"i/,
which means e"i/ is real. Thus, / ¼ 0 or p. In this formula-
tion, A0 is strictly positive and the sign variation occurs only
in the factors e"i/ and x2

0 " x2. Figure 5 shows the two pos-
sibilities for the basic arrangement of force phasors in the
cases / ¼ 0 [Fig. 5(a)] and / ¼ p [Fig. 5(b)], which corre-
spond to low (x < x0) and high (x > x0) driving frequen-
cies, respectively. The phasors are shown at some instant for
which the position has a purely positive real value, and the
whole phasor diagram can be imagined to rotate counter-
clockwise as a rigid structure around the origin at frequency
x. The relatively simple network of geometric

Fig. 3. Graphs of position and velocity as functions of time for underdamped
oscillatory motion. The time at which the oscillator passes through the equi-
librium position is after one quarter period, by an amount that is exactly
equal to the amount of time that the instant of maximum speed comes before
one quarter period.
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interrelationships allows for a variety of paths of reasoning.
For example, if the position is sinusoidal, then the accelera-
tion phasor is directed exactly opposite the position phasor.
The spring force phasor is also directed opposite to the posi-

tion by ~Fspring ¼ "k~x. The net force phasor must be parallel
to the acceleration phasor, and therefore to the spring force
phasor. However, the spring force and net force phasors will
generally not be the same length; the driving force phasor
makes up the vector difference either way, depending on
whether the driving frequency x is lower or higher than the
natural frequency x0. In either case, it is easy to see in this
representation that the driving force must lie on the same line
as the spring force in order to give a net force that is in the
same direction as the spring force. This is another way of
making sense of the result that the phase angle must be 0 or
p. Similarly, one can reason that the effect of the driver in
this scenario is simply to augment or reduce the spring
constant.

VII. DAMPED FORCED HARMONIC MOTION

The “free-body diagram style” reasoning from Sec. VI is
extended here by adding a linear damping force. In Fig. 6,

four phasors are shown: one for each of three complex
forces, due to the spring, the drag, and the driver; and the net
force, which is the vector sum of the other three. The forces
are shown at an arbitrary instant during steady-state motion
in which the complex forces all have constant magnitude and
constant relative phase angle; i.e., they form a rigid structure.
The driving force is also shown as the sum of two compo-
nents: one sharing an axis with the drag force, and one shar-
ing an axis with the spring and net forces. In the example
shown in Fig. 6, the net force is larger in magnitude than the
spring force, which corresponds to the frequency of motion
x being greater than the natural frequency x0.

A. Making sense of /ðxÞ with the ~F complex plane

The phasor diagram in Fig. 6 can be studied by varying
the driving frequency x and examining both the resulting
phase angle /ðxÞ by which the driving force leads the posi-
tion and the magnitude of the driving force in relation to the
other forces. In Fig. 7, the complex forces from Fig. 6 are
shown for particular values of x: (a) very low frequency, (b)
resonant frequency xr, (c) natural frequency x0, and (d)
very high frequency. As in Fig. 5, the phasors in Fig. 7 are
shown at some instant for which the position is a purely posi-
tive, real value.

For very low frequency, the drag force and net force mag-
nitude can each be compared with the magnitude of the
spring force:

j ~Fdragj ¼ bxA0 ¼ bx
j ~Fspringj

mx2
0

/ x
x0

" #
j ~Fspringj ( 0;

(6)

jR ~Fj ¼ mx2A0 ¼ mx2 j ~Fspringj
mx2

0

/ x
x0

" #2

j ~Fspringj ( 0:

(7)

In this case, the driving force must approximately cancel the
spring force, which results in a phase of 0 by which the
driver leads the position. In this limit, the reasoning is the
same as it is for driving an undamped oscillator at very low
frequency, and the phasor diagram looks like the low-
frequency limit of Fig. 5(b). These results can be coordinated
with physical intuition as well: if I were to “drive” a tabletop
damped mass-and-spring system at very low frequency with

Fig. 4. Phase angles for position, velocity, and acceleration at an arbitrary
instant for the steady-state solution to the harmonic oscillator with no damp-
ing and with a sinusoidal driving force.

Fig. 5. Forces on an undamped oscillator with a sinusoidal driving force, shown in the complex force plane. (a) The driving frequency is less than the natural
undamped frequency x0. (b) The driving frequency is greater than the natural undamped frequency x0.
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my hand, I can imagine that the effect of the driving force
would be essentially to hold the mass in place at various
locations, or more accurately, to move it quasi-statically
with an extremely long period. In this case, it makes sense
that the driving, or “holding” force, would very nearly cancel
the spring force at all locations, and thus would be in phase
with the position.

For the resonant frequency xr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 " 2c2
p

, the general
form of the phase angle,

/ xð Þ ¼ tan"1 2cx
x2

0 " x2

" #
; (8)

reduces to /ðxrÞ ¼ tan"1ðxr=cÞ. If the damping is weak but
non-negligible, then xr=c) 1 and tan"1ðxr=cÞ is close to,
but less than, p=2, as shown in Fig. 7(b). This phase angle is
consistent with the fact that the driving force must have a
small positive real component to compensate for the slight
excess of the spring force over the net force. The diagram
indicates also that at this frequency, the driving force is
approximately the same magnitude as, but slightly greater
than, the damping force. In Fig. 7(c), the frequency is exactly
equal to the natural frequency x0, the phase angle is exactly

Fig. 6. Complex forces on a damped forced oscillator at some arbitrary
instant during steady-state motion. The forces have constant magnitude and
have constant phase angles in relation to each other, so the arrows rotate like
a rigid structure at the driving frequency.

Fig. 7. Complex force diagrams for damped forced harmonic motion at different driving frequencies x. For ease of comparison, all diagrams are shown for
some instant at which the position phasor is a positive real value: (a) Very low driving frequency ðx* x0Þ; (b) Resonance ðx ¼ xr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 " 2c2
p

Þ; (c)
Driving frequency equal to the natural undamped frequency ðx ¼ x0Þ; (d) Very high driving frequency ðx) x0Þ. The scale of the diagram in (d) is “zoomed
out” to keep very large forces in the frame.
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p=2, and the driving force is exactly equal in magnitude to
the damping force.

For very large frequency [Fig. 7(d)], the scale of the dia-
gram is reset so that the largest forces (the driving force and
the net force) are in the frame; the spring force, which does
not increase with frequency, becomes relatively small. The
drag force grows with frequency, but only linearly, while the
net force grows quadratically. Thus, the drag force is also
relatively small on this scale:

j ~Fspringj ¼ mx2
0A0 ¼ mx2

0

jR ~Fj
mx2

/ x0

x

" #2

jR ~Fj ( 0; (9)

j ~Fdragj ¼ bxA0 ¼ bx
jR ~Fj
mx2

/ c
x

" #
jR ~Fj ( 0: (10)

Since the net force is due mainly to the driving force, the
phase angle is now almost p; which it approaches as the fre-
quency approaches infinity. The very large frequency limit
can also be checked with physical intuition in a manner simi-
lar to our imagined enactment of the very low frequency
limit. In the high frequency limit, the driving force by my
hand would shake the mass vigorously back and forth, with a
total disregard for any haptic feedback from the natural
motion of the system. This driving force would have a very
large amplitude in order to achieve very high acceleration at
the turning points, and because it would be very large, it
would basically be achieving the acceleration by itself, with-
out any significant help from the other available forces.
Therefore, it makes sense that the phase of the driving force
would be equal to that of the acceleration, and opposite to
that of the position.

B. Representing ~Fdriver parametrically in the complex
force plane

We can gain additional insight into the function FðxÞ by
plotting ~F in the complex plane with the frequency x as
an independent parameter. This can be done by first follow-
ing the usual steps for solving for AðxÞ: Substitute
~xðtÞ ¼ A0eiðxt"/Þ into Feixt ¼ m€~x þ b _~x þ k~x, which gives
Fei/ ¼ mðx2

0 " x2ÞA0 þ bixA0. The separate equations for
real and imaginary parts are connected through x, and thus
they can be related

Re ~F½ ' ¼ mA0 x2
0 " x2

$ %
¼ mA0 "

Im ~F½ '
2mcA0

 !2

þ x2
0

2

4

3

5

¼ "1

4c2mA0
Im ~F½ 'ð Þ2 þ mx2

0A0: (11)

We can therefore understand Re½ ~F' as a quadratic function of
Im½ ~F', and we can think of ~F as a parabola lying on its side,
as shown in the bottom part of Fig. 8. With this perspective
it is apparent from the fact that the curve is not perpendicular
to the imaginary axis when it crosses it that the minimum
magnitude of ~F cannot be at x ¼ x0 but must be at some
lesser frequency, where the distance from the origin to the
curve is least. Figure 8 also shows the correspondence
between the traditional graph AðxÞ, its multiplicative inverse
FðxÞ, and the parametric graph FðxÞei/ðxÞ in the complex
plane for four frequencies, corresponding to the letters A–D.
The graph can be further extended in the imagination like

this: Imagine a positive, real scalar field on the ~F plane that
is proportional to 1=FðxÞ and thus proportional to AðxÞ. If
the field is represented by an “altitude” out of the plane, it
would look like a circular spire that is commonly used to
represent a repulsive “1=r” Coulomb potential. Then the
graph of AðxÞ in the top of Fig. 8 corresponds to the “height”
above the plane along the path of the curve in the bottom of
Fig. 8.

The parametric graph has several advantages: it represents
a quadratic function, so it is algebraically simpler and more
familiar; being parametric, it captures a higher dimensional-
ity of information, as advised by experts in graphic design17

(i.e., correspondence between frequency, phase, and force
amplitude); and it shares a common space with the phasor
diagrams of Fig. 7, which allows for opportunities for rea-
soning about the relationships among forces and kinematic
variables. Notice that the preceding analysis still does not
explain physically why the resonant frequency is not at the
natural frequency. It may still remain as a puzzle how it can
be that a slightly lower frequency should result in a greater
position amplitude (or lesser force amplitude), and this
despite what seems to be a slightly unfavorable phase angle
that results in the driver delivering a small amount of nega-
tive power. However, by representing quantities in the com-
plex plane, we have been able to increase the connectivity of
the network of relationships among quantities and therefore
have more paths of reasoning by which we can understand
some of the traditional algebraic results.

VIII. CONCLUSION

In this article, I have argued that approaching harmonic
motion with an emphasis on using the complex plane for
geometric reasoning affords possibilities for insight and for
strengthening intuition and understanding by coordinating
different types of lines of reasoning, especially algebraic,
physical, and geometric. By visualizing magnitudes and
phase angles of complex kinematic variables and forces,
how they might change over time, and how they might

Fig. 8. Correspondence between the traditional representation of resonance
AðxÞ and two new alternative representations. In the top graph, AðxÞ and
FdriverðxÞ are shown as real functions of the frequency x. The graph on the
bottom is the complex function ~FdriverðxÞ shown in the complex force plane.
The magnitude of this function (i.e., its distance from the origin) is the
height of the graph of the real function FdriverðxÞ in the top. In this example,
c ¼ 0:25x0.
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change in response to a change in physical parameters such
as damping constant and driving frequency, we add support
to algebraic results we know and can become aware of other
relationships that we did not already know algebraically. In
this way, the ideas presented here can supplement and
enhance the traditional practice in physics education of pre-
senting a basic analysis of damped and forced harmonic
motion to our upper-division undergraduates.

The ultimate purpose of such an approach to teaching stu-
dents about harmonic motion in such fine detail is not pre-
cisely to produce students who know fine details about
mathematical models for harmonic motion. Instead, the edu-
cational purpose is to provide students with a rich experience
of how one can develop intimate knowledge of a physical
system or model through the discipline of coordinating mul-
tiple representations and lines of reasoning. Through this ex-
perience, it may be that students will be better prepared to
forge such relationships for themselves and their peers with
newly discovered physical systems and models.
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