The Poynting vector and power in a simple circuit
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This paper outlines a simple technique for visualizing the flow of energy from a power supply to
elements in a circuit as a flow through the electric and magnetic fields—or the Poynting vector—
surrounding the circuit. In addition to providing the reader experience with the Poynting vector and
its relation to energy flow and power, we also present a quick method for solving Laplace’s equation
in two dimensions. © 2000 American Association of Physics Teachers.

I. INTRODUCTION

The role of surface charges on wires connecting elements
in an electric circuit has been discussed by Jackson' and
Heald.> While these papers also discuss the Poynting vector
and its relationship to energy flow, they require the reader to
have experience with higher level mathematics (e.g.,
Fourier—Bessel series in Jackson’s paper and cylindrical har-
monics in Heald’s). Other work has described the relation-
ship of the Poynting vector and energy flow in transformers®
and in time-changing systems with electromagnetic
induction.* This paper analyzes a simple circuit in two di-
mensions. We first solve Laplace’s equation with the relax-
ation method using a spreadsheet. From the resulting poten-
tial we calculate the electric field. With the two-dimensional
circuit we then have a simple, constant magnetic field. Thus
all the calculations can be performed numerically in a single
spreadsheet with no need for introducing special mathemati-
cal functions. We feel this approach is useful in teaching
introductory electricity and magnetism.

Figure 1 illustrates the circuit under consideration.
Throughout the paper we’ll assume that the values of the
resistors are 3() and the power source is a 1-V battery.
Hence the power generated by the battery is 1 W while each
resistor dissipates $W. That is the simple way to look at
things. But let’s take this simple example with solutions we
know and look at it with more sophisticated tools; i.e., let’s
make the simple complicated.

II. THE ELECTRIC POTENTIAL AND LAPLACE’S
EQUATION

The electric field is obtained by solving Laplace’s equa-
tion in two dimensions. Note that this effectively turns the
circuit into a long square channel with long ribbon-like re-
sistors and battery. For this paper we assume the channel is
sufficiently long that ‘‘end effects’ are negligible. This ide-
alization, in addition to making the electric field simple to
solve (via Laplace’s equation in two dimensions), makes the
magnetic field trivial as we now have a solenoid of square
cross section. Also, qualitative features of the electric and
Poynting vector fields of an actual circuit, in addition to
quantitative results for power, are preserved.

To solve Laplace’s equation we use the ‘‘relaxation
method,”” > which is an iterative method that simply replaces
the potential at a point by the average of the points surround-
ing it. After a number of iterations, the potential ‘‘relaxes’’
to the solution. The Laplacian can be thought of as an aver-
aging operator. We define the boundary conditions in a
spreadsheet on a square 100X 100 grid. For our particular
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circuit, shown in Fig. 1, the boundary of the square grid
consists of the wires connecting the circuit elements. This
means the outer boundary of the first quadrant is at 0.5 V, the
second at 1.0 V, and the third and fourth at 0.0 V (assuming
the origin is the center in Fig. 1). Note that we are assuming
that the resistors and battery are point-like (in the plane of
the figure) objects. We then set the interior cells to be the
average of the four cells (nearest neighbors) around them. In
EXCEL this produces a ‘‘circular references’’ error, which can
be overcome by setting the spreadsheet up to resolve circular
references.® Thus, within minutes, the spreadsheet has per-
formed the ‘‘relaxation method’ and has solved Laplace’s
equation in two dimensions.

III. THE ELECTRIC FIELD

From here one could proceed in the spreadsheet by imple-
menting numerical derivatives’ on additional second sheets.
Alternatively, one could output the array of numbers to a file
for processing in another mathematical program. We have
used MATHCAD, MATLAB, and MATHEMATICA; all work very
well. MATHEMATICA has strong graphical capabilities (all the
figures in this paper were generated with MATHEMATICA) and
built-in functions for handling the gradient of a discrete array
of numbers. From the potential the gradient is taken and the
electric field is obtained. Figure 2 shows a contour plot of the
potential with the direction of the electric field (unit vectors)
overlaid.
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Fig. 1. The circuit under consideration. All elements are considered point-
like. Battery and resistor values are noted in the text.
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Fig. 2. The electric potential is shown in the contour plot with the electric
field direction (unit vectors) overlaid.

IV. MAGNETIC FIELD

The magnetic field for a long square channel is that of a
solenoid® and is given by B= uol/L throughout the interior
of the circuit and zero elsewhere. [ is the current and L is the
length of the solenoid (the solenoid is square in cross sec-
tion). The idealization is for L to approach infinity and thus B
approaches zero. However, when we obtain the total power
we integrate over the length and thus the quantity [~/ i nBdl
remains constant.

V. POYNTING VECTOR AND POWER

With the electric and magnetic fields the Poynting vector
is computed from S=(1/uy)EXB. It is shown in Fig. 3
(again with unit vectors overlaid). The outward power flow
from each element, in our two-dimensional world, is given
by the normal component of the Poynting vector integrated
over each ‘‘surface,”’ such as those depicted by dashed lines
in Fig. 4. We find that this integrated power is as expected (1
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Fig. 3. The magnitude of the Poynting vector is shown in the contour plot
with its direction (unit vectors) overlaid.
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Fig. 4. The dashed lines indicate the surfaces used for the power calcula-
tions.

W for the battery and —0.5 W for each resistor) to within
about 1%. (Square grids of 10, 30, and 100 were explored.
We settled on 100 because the contour plot for the Poynting
vector displayed slight ‘‘wiggles’” near the circuit elements
which vanished once the mesh was fine enough. The inte-
grated powers for grid sizes of 30X 30, and even 10X 10,
were still within a few percent.)

VI. CONCLUSION

We have presented a numerical technique to investigate
the Poynting vector and its relationship to flow of power in a
simple circuit. The entire investigation can be performed in a
spreadsheet or in combination with other mathematical pro-
grams. One may also explore other circuits, treat circuits in
full three dimensions, check the power flow through surfaces
that do not include an element, and investigate the presence
of surface charge.
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WHAT KEEPS AN AIRPLANE UP?

Everybody admits, I suppose, that the sciences other than mathematics are based on experi-
ment. Things that can be checked by experiment are accepted: things that disagree with experi-
ment are not. However, I am not aware of any physics or chemistry or biology course that repeats
all the classical experiments, or even any of those that are particularly difficult or time-consuming.
At least in the science courses I took (of course, this was a long time ago) we were told that certain
things had been established experimentally, and maybe (not always) what the experiment was like.
Inspection of some current textbooks suggests that things haven’t changed much in 40 years.

Now I do not know any experimental scientists who seem to feel uncomfortable about this state
of affairs, although for all I know they may worry about it in secret. Nor do they seem to worry
about the necessity of sometimes giving oversimplified or even mildly fallacious reasons why the
experiment comes out as it does. For example, why does an airplane stay up? Elementary texts
give theoretical reasons that do not seem very convincing; the real theoretical reasons are clearly
too sophisticated for elementary courses; it presumably would be possible also to rely on experi-
mental measurements of the flow around a wing, but few, if any, physics courses bring wind-
tunnels into the classroom.
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