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The methods of calculating fields due to quasi-steady currents in closed and unclosed circuits
are reviewed. It is emphasized that it is sufficient to apply the Biot-Savart law to all the
moving charges and to ignore the vacuum displacement current, Attention is drawn to a
basic error in the widespread practice of treating a circuit containing a capacitor as though
the fringing fields could be ignored and the displacement current replaced by conduction

currents confined to the gap between the plates.

1. INTRODUCTION

URPRISINGLY many textbooks of physics
contain misleading or erroneous statements
about the magnetic effect of electric displace-
ment currents. To focus attention on the type of
misconception that is involved, let us consider
the following problem: Suppose that we charge
two parallel conducting plates so that they carry
equal charges of opposite sign; between them
there is an electric field. Now imagine that we
turn on a strong x-ray source and irradiate the
air between the plates. The air in the gap be-
comes ionized and the ions move, carrying
electric charges from one plate to the other,
thereby discharging the plates. What is the
magnetic field at a point, say P, outside the
plates? (Fig. 1)
Certainly the movement of the ions produces
a magnetic field at P. It is sometimes argued
that, in addition, as the plates are discharged,
the changing electric field between the plates,
that is, the displacement current, produces a
magnetic field at P which is equal and opposite
to that produced by the movement of the ions;
it is thus predicted that the resultant magnetic
field is zero. This is incorrect. The movement of
the ions produces a magnetic field at P, and
that s the field. It {s not canceled or diminished
by anything else.! Planck expressed this clearly
many years ago when he wrote,? ““. . . even in
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T Any conduction currents which flow in the plates, of
course, also contribute to the magnetic field.

? Max Planck, translated by H, L. Brose, Introduction
to Theoretical Physics (MacMillan and Company, Ltd.,
London, 1932), Vol. I11, p. 197; see also W. T. Scott, The

the case ol unclosed currents the magnetic in-
tensity of the field is calculated from the vector-
potential of the conduction currents without
regard to the displacement currents. ”
(Planck is here dealing with situations for which
¢ is the same everywhere.)

We will return to this “leaky capacitor” prob-
lem later, but first let us examine more generally
the role of the displacement current in such
problems.

2. CALCULATING THE MAGNETIC FIELD

There are several equivalent methods by
which the magnetic field can be calculated. For
quasi-steady conditions, that is, ignoring radia-
tion effects, B can be calculated, using the Biot—
Savart law, from a knowledge of the real currents
alone:

B(r)=—

T

o rJ@) % (@x—1)ds
£ / T

jr—r'|?
This is one method.

A second method
equation

is to use the Maxwell

curl B=po(J+D). (2)

This equation can be obtained by taking the curl
of Eq. (1), provided that quasi-steady condi-
tions are assumed.? If Eq. (2) is integrated over
a Stokes surface bounded by some closed con-
tour, we have the familiar result

fB-ﬂ:uo/S (J+D)-ds. (3)

Physics of Electricity and Magnetism (John Wiley & Sons,
Inc., New York, 1959), p. 304.

3 See, for example, Arthur Bierman, Am. J. Phys. 29,
355 (1961); J. D. Jackson, Classicel Electrodynamics (John
Wiley & Sons, Inc., New York, 1962), Secs. 5.3, 6.3.
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¥1c. 1. Magnetic field surrounding the *leaky capacitor.”

This integrated form then allows one to make
the statement that the line integral of B around
a closed loop is equal to the total flux of real
current plus displacement current through the
loop. We have here what we may call the general-
ized form of Ampére’s circuital theorem. In this
way of stating the result, the inclusion of the
displaciment current is essential for obtaining
correct answers.

It may be instructive to illustrate the equiva-
lence of these two methods with the following
specific and basic example: Consider a current
I flowing over an infinitesimal line segment ds
(Fig. 2) with accumulation of charges —g¢ and
+¢q at the ends of the element.

Let us calculate, by means of the circuital
theorem, the magnetic field at a point P, whose
coordinates are (r;9) with respect to one end of
the element. Given the obvious symmetry of
the problem, we choose as the boundary line [ of
our integration a circle through P, of radius
7 sind, with its center on the axis defined by ds.
The surface of integration on the right-hand side
of Eq. (3) can be any surface bounded by the
contour.

Suppose, first, that we take a surface .S that
does not intersect the current element. Then the
J term in Eq. (3) vanishes, and, ignoring re-
tardation effects, we have,

f D sy -dS = 4(1—cosd)
S

/ D ,-dS= —%j[1—cos(®+d9)].
s
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Combining these, and using dd = ~ds sind/r, we
have

[ D.dS =1 sin%¥ds/r.
s

The circuital theorem then gives us
2wy sindB = (uog/2) (sin®dds/7),

that is
Bi= (uo/47) (I sindds/r?). 4)

This is at once recognized as the result obtained
by applying the Biot—Savart law to the real
current flowing in the segment ds.*

It can be easily verified that if we had used a
sutface .S, intersecting the current element, the
J and D would have combined to give the same
result,

The above example of the equivalence of Eqs.
(1) and (3), though simple, is important, because
any electrical circuit, whether it be closed or
open, can be represented as a combination of
such current elements. And the currents in suc-
cessive elements can be different, thus allowing
for the accumulation of charge at particular
places in the circuit, as, for example, on the
plates of a capacitor.

3. CIRCUITS WITH CAPACITORS

We consider now a parallel-plate capacitor
being charged by a current 7 [Fig. 3(a)]. Let
the capacitor have circular plates of radius R
and separation d, and suppose that we wish to
find the magnetic field at a point P, lying just
outside the plates on the mid-plane between

Fi6. 2. Magnetic field due to a current element.

1 For excellent further discussion, see E. G. Cullwicl;,
The Fundamentals of Electro- Magnetism (Cambridge Uni-
versity Press, New York, 1949), pp. 149 ff.
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(b)

F16. 3. (a) Capacitor with fringing fields, during charging;
(b) current flow in internally shorted capacitor.

them. The first feature to be noted is that the
field at P is certainly less than would be the case
if the real current I were continued between
the plates. For suppose we draw a Stokes surface
S as shown, having as its boundary a circular
loop through P with its center on the axis of
symmetry. This surface will be threaded in one
direction by the real current I, and in the oppo-
site direction by lines of D. If the capacitor plates
were shorted, without changing the size of I,
the potential difference between them would
become constant, and the lines of D would
disappear. Thus the net flux of conduction plus
displacement currents through the surface .S, and
hence the field B, is less in the first case than in
the second. But how much less? To say (as many
textbooks do) that the difference is trivial, being
due merely to the small fringing fields, covers
up a vital feature: the difference corresponds
precisely to the missing part of the real-current
circuit.

A closely related situation is the internal dis-
charge of a capacitor, and we believe that this
example is of particular value in exposing the
basis of some of the misconceptions regarding
displacement current. In Fig. 3(b) we show our
capacitor being discharged by a shorting wire
between the plates. The general pattern of cur-
rent flow is shown by the arrows. Again we
consider a circular path through all points such
as P, distant R (approximately) from the axis
of symmetry, but this time we take our Stokes
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surface to be the plane of the circle. The cir-
cuital law tells us that

szBl=m<1+/ D-dS),
S

where [/ is the total current flowing in the shorting
wire. Hence

Bi= (ol /22 R) + (uo/27R) / D.ds.  (5)
8

We thus have the magnetic field formally ex-
pressed as the algebraic sum of two terms: the
field of an infinitely long wire carrying the
current [, and the field due to an oppositely
directed flow of displacement current. The usual
elementary discussion of this result consists in
saying that, if fringing effects are ignored, the
two terms on the right-hand side of Eq. (5) are
equal and opposite, and hence the external mag-
netic fleld is zero. This is a mistake in principle.
It requires that the electric field be entirely
confined to the region between the plates; but
this in turn requires reducing the gap between
the plates to zero, thus eliminating the capacitor
altogether. If we analyze the problem from the
standpoint of the Biot-Savart law, then, as
Fig. 3(b) shows, the real currents in the capacitor
plates and the shorting wire will cooperate to
give a nonvanishing field, at P, and its value
will be given approximately by

Bi= (uo/4m) (1d/R). (6)

It is no surprise to discover that the actual field
By, as given by Eq. (6), is of the order of d/R
times the first term on the right-hand side of
Eq. (5).

4. THE LEAKY CAPACITOR

We have discussed the two most familiar
methods by which one can calculate the magnetic
field in the neighborhood of a circuit containing
a capacitor. The relationship between them can
be further illuminated, and the importance of the
fringing field emphasized, by the following
considerations, which we will apply to the leaky
capacitor problem with which we began this
paper.

Equations (2) and (3) show clearly that the
displacement current density Dis equivalent to
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Fi1c. 4. Effective current distribution due to
D in discharge of leaky capacitor.

a real current density, say Jp. Let us then re-
place D everywhere with Jp (Fig. 4). We could,
in principle, calculate the contribution of the
current field Jp to the magnetic field at P using
the Biot-Savart law, Eq. (1). The result is,
however, zero; this means that the Biot—Savart
contribution from that portion of Jp which lies
“between’’ the plates is exactly canceled by the
contribution from the fringing Jp. One way of
seeing that the Jp distribution produces no mag-
netic field is to recognize that B is given by?®

0 1J'
By =" / curld @

dr J  |r—r'|

Hence if J in this equation is Jp, and thus ex-
pressible, for quasi-steady situations, as the
gradient of a scalar, the curl of J is zero and the
integral vanishes. This result is implicit in
Planck’s statement quoted earlier. Thus all that

5 See, for example, S. J. Raff, Am. J. Phys. 26, 454 (1958).
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remains is the Biot—-Savart contribution from
the original real currents—that is, the motion
of the ions.

5. CONCLUDING REMARKS

It is not at all our intention to seek to di-
minish the importance of the displacement
current in electromagnetic theory. In particular,
the treatment of electromagnetic waves would
be absurdly complicated if the fields were always
referred back to the motions of real charges.
And even in many circuit problems it is much
simpler to compute magnetic fields from the
circuital theorem than from the Biot—Savart law.

We have, however, sought to make two main
points. The first is to emphasize that, in all cases
of quasi-steady currents, be they closed or un-
closed, the magnetic field can be calculated by
applying the Biot-Savart law to all the moving
charges in the system. The second is that, in
calculating by the alternative method of the
circuital theorem, in which both conduction cur-
rents and displacement currents are included,
one must be sure to avoid approximations that
are basically incompatible with the special fea-
tures of the system being investigated.
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