- An EM wave passes from air to metal, what does **your intution** say happens to the wave in the metal?
- A. It will be amplified because of free electrons
- B. It will die out over some distance
- C. It will be blocked right at the interface because there's no E field in a metal
- D. Not sure

An EM wave passes from air to metal, which do you think is **most likely** the physics will give us?

- A. It will be amplified because of free electrons
- B. It will die out over some distance
- C. It will be blocked right at the interface because there's no E field in a metal
- D. Not sure

ANNOUNCEMENTS

- Quiz 5 (this Friday, DC out of town)
 - Construct the expression for plane wave given a description
 - Both complex and real expressions
 - Combine two plane waves and describe the resulting superposed wave
- HW 10 posted tomorrow AM

Suppose I stick some charge ρ_f down somewhere in a metal (with conductivity σ). What does $\rho(t)$ look like if we can invoke Ohm's law ($\mathbf{J} = \sigma \mathbf{E}$)? *Hint: Think about charge conservation.*

> A. $\rho(t) = \rho_f \sin(\sigma t/\varepsilon_0)$ B. $\rho(t) = \rho_f \cos(\sigma t/\varepsilon_0)$ C. $\rho(t) = \rho_f e^{-\sigma t/\varepsilon_0}$ D. $\rho(t) = \rho_f e^{-\varepsilon_0 t/\sigma}$ E. Something else

Consider a good conductor ($\sigma \sim 10^8$ S/m), how long roughly does it take for free charge to dissipate ($t \sim \varepsilon_0/\sigma$)?

A. 10^{-19} s B. 10^{-12} s C. 10^{-8} s D. 10^{12} s E. Something else Given our estimates of collision times $(10^{-14} s)$, for what kinds of light is our analysis not so great for?

A. X-Rays (~ 10^{18} Hz) B. Visible light (~ 10^{15} Hz) C. IR (~ 10^{13} Hz) D. Radio (~ 10^{8} Hz) E. More than one of these

What does this ansatz attempt (i.e., using $\sim e^{(kz-i\omega t)}$)
remind you for this?With the proposed solution, $\widetilde{\mathbf{E}} = \widetilde{\mathbf{E}}_0 e^{i(kz-\omega t)}$, what
equation does k satisfy?What does this ansatz attempt (i.e., using $\sim e^{(kz-i\omega t)}$)
remind you for this?Think about the wave equation: $\nabla^2 \mathbf{E} = \mu \sigma \frac{\partial \mathbf{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$ A. Solving the simple harmonic oscillator
B. Solving the damped harmonic oscillator
C. Solving the driven harmonic oscillator
D. Some other set upA. $k^2 = i\omega\mu\sigma + \omega^2\sigma\varepsilon$
B. $k^2 = \omega\mu\sigma + i\omega^2\sigma\varepsilon$
C. $k = \omega\mu\sigma + i\omega^2\sigma\varepsilon$
E. Something else

What is the \sqrt{i} ?

A. -iB. $\frac{1+i}{\sqrt{2}}$ C. -1D. $e^{i\pi/4}$ E. None or more than one of these