True or False: The electric field, $\mathbf{E}(\mathbf{r})$, in some region of space is zero, thus the electric potential, $V(\mathbf{r})$, in that same region of space is zero.

A. True B. False **True or False:** The electric potential, $V(\mathbf{r})$, in some region of space is zero, thus the electric field, $\mathbf{E}(\mathbf{r})$, in that same region of space is zero.

A. True B. False

ANNOUNCEMENTS

- Homework 1 due today at 5pm
 - After 3:40pm turn in to Kim Crosslan
 - Last two questions turn in on Github
- Quiz #1 Next Friday
 - Last 20 minutes of class
 - No cheat sheets; all formulas will be provided
 - Solve a Gauss' Law Problem with spherical symmetry
 - Sketch a graph of the resulting electric field

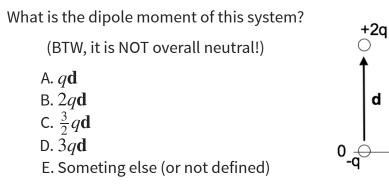
The general solution for the electric potential in spherical coordinates with azimuthal symmetry (no ϕ dependence) is:

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta)$$

Consider a metal sphere (constant potential in and on the sphere, remember). Which terms in the sum vanish outside the sphere? (Recall: $V \rightarrow 0$ as $r \rightarrow \infty$)

A. All the A_l 's B. All the A_l 's except A_0 C. All the B_l 's D. All the B_l 's except B_0 E. Something else

$$\mathbf{p} = \sum_{i} q_i \mathbf{r}_i$$



x

You have a physical dipole, +q and -q a finite distance d apart. When can you use the expression:

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p} \cdot \mathbf{r}}{r^2}$$

A. This is an exact expression everywhere.
B. It's valid for large r
C. It's valid for small r
D. No idea...

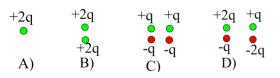
You have a physical dipole, +q and -q a finite distance d apart. When can you use the expression:

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{\Re_i}$$

- A. This is an exact expression everywhere.
- B. It's valid for large *r*
- C. It's valid for small r

D. No idea...

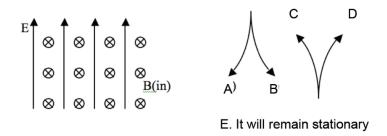
Which charge distributions below produce a potential that looks like $\frac{C}{r^2}$ when you are far away?



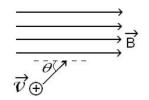
E) None of these, or more than one of these!

(For any which you did not select, how DO they behave at large r?)

A proton (q = +e) is released from rest in a uniform **E** and uniform **B**. **E** points up, **B** points into the page. Which of the paths will the proton initially follow?



A proton (speed v) enters a region of uniform **B**. v makes an angle θ with **B**. What is the subsequent path of the proton?



- A. Helical
- B. Straight line
- C. Circular motion, \perp to page. (plane of circle is \perp to B)
- D. Circular motion, \perp to page. (plane of circle at angle θ w.r.t. **B**)
- E. Impossible. ${f v}$ should always be ot to ${f B}$

Current *I* flows down a wire (length *L*) with a square cross section (side *a*). If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density *J*?

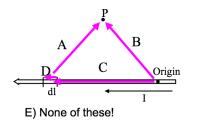
A.
$$J = I/a^2$$

B. $J = I/a$
C. $J = I/4a$
D. $J = a^2 I$
E. None of the above

To find the magnetic field **B** at P due to a current-carrying wire we use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{\Re}}}{\mathbf{\Re}^2}$$

In the figure, with $d\mathbf{l}$ shown, which purple vector best represents \Re ?



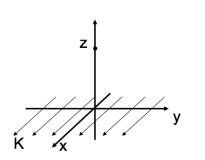
What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current *d* in red?

A. **B**(*P*) in plane of page, ditto for d**B**(*P*, by red)

- B. **B**(P) into page, d**B**(P, by red) into page
- C. **B**(P) into page, d**B**(P, by red) out of page
- D. **B**(P) complicated, ditto for d**B**(P, by red)

E. Something else!!

Consider the B-field a distance z from a current sheet (flowing in the +x-direction) in the z = 0 plane. The B-field has:

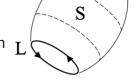


A. y-component only B. z-component only C. y and z-components D. x, y, and z-components E. Other

Stoke's Theorem says that for a surface S bounded by a perimeter *L*, any vector field **B** obeys:

$$\int_{S} (\nabla \times \mathbf{B}) \cdot d\mathbf{A} = \oint_{L} \mathbf{B} \cdot d\mathbf{l}$$

Does Stoke's Theorem apply for any surface *S* bounded by a perimeter *L*, even this balloon-shaped surface S?



A. Yes

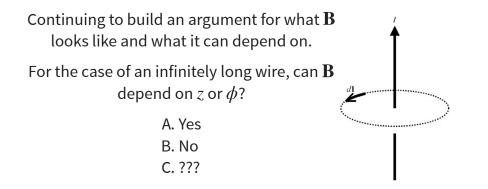
- B. No

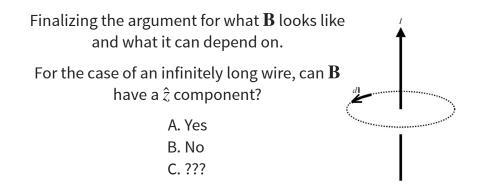
C. Sometimes

Much like Gauss's Law, Ampere's Law is always true (for magnetostatics), but only useful when there's sufficient symmetry to "pull B out" of the integral. So we need to build an argument for what \mathbf{B}^{4} looks like and what it can depend on. For the case of an infinitely long wire, can **B** point radially (i.e., in the \hat{s} direction)? A. Yes

B. No

C. ???





Gauss' Law for magnetism, $\nabla \cdot \mathbf{B} = 0$ suggests we can generate a potential for \mathbf{B} . What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

A.
$$\mathbf{B} = \nabla \Phi$$

B. $\mathbf{B} = \nabla \times \Phi$
C. $\mathbf{B} = \nabla \cdot \mathbf{A}$
D. $\mathbf{B} = \nabla \times \mathbf{A}$
E. Something else?

We can compute \mathbf{A} using the following integral:

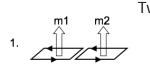
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$$

Can you calculate that integral using spherical coordinates?

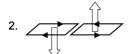
A. Yes, no problem

B. Yes, r' can be in spherical, but \mathbf{J} still needs to be in Cartesian components

C. No.



Two magnetic dipoles m_1 and m_2 (equal in magnitude) are oriented in three different ways.



3.

Which ways produce a dipole field at large distances?

A. None of these

B. All three

C. 1 only

D. 1 and 2 only

E. 1 and 3 only