Consider a pendulum with a bob of mass m attached to a rigid but massless rod with length L. Which equation describes the motion of the bob with respect to the vertical?

$$
\begin{aligned}
& \text { A. } m \ddot{\theta}=+g \sin \theta \\
& \text { B. } m \ddot{\theta}=-g \sin \theta \\
& \text { C. } m L \ddot{\theta}=-m g \sin \theta \\
& \text { D. } m L \ddot{\theta}=+m g \sin \theta \\
& \text { E. Something else }
\end{aligned}
$$

Let's take the easy route for the moment.

$$
\ddot{\theta} \approx-\frac{g}{L} \theta
$$

WHITRFITOLD YOO

THAT THE SOLUTIONISTHE HARMONIC OSGIILITORE

What is the general solution to:
$\ddot{\theta} \approx-\omega^{2} \theta$?
A. $\theta(t)=A \cos \omega t$
B. $\theta(t)=B \sin \omega t$
C. $\theta(t)=A \cos \omega t+B \sin \omega t$
D. $\theta(t)=A \cos (\omega t+\delta)$
E. More than one of these

OMGBBQPIZZA

HABMONDOSGINITOBS

- ETEBMUHERE

Nature tends to minimize energy

Have you worked with phase space before?
A. Yes, and I recall how that works
B. Yes, I think so...ok, actually, maybe...
C. I have no idea what you are talking about, hoss

Now that we have sketched $\langle\dot{x}, \dot{v}\rangle=\langle v, 0\rangle \ldots$ Sketch $\langle\dot{x}, \dot{v}\rangle=\langle 0,-x\rangle$ in phase space.

What about $\ddot{x}=-\sin x$?

