Consider a pendulum with a bob of mass *m* attached to a rigid but massless rod with length *L*. Which equation describes the motion of the bob with respect to the vertical?

A. $m\ddot{\theta} = +g\sin\theta$ B. $m\ddot{\theta} = -g\sin\theta$ C. $mL\ddot{\theta} = -mg\sin\theta$ D. $mL\ddot{\theta} = +mg\sin\theta$ E. Something else

Let's take the easy route for the moment.

$$\ddot{\theta} \approx -\frac{g}{L}\theta$$

What is the general solution to: $\ddot{\theta} \approx -\omega^2 \theta$?

A. $\theta(t) = A \cos \omega t$ B. $\theta(t) = B \sin \omega t$ C. $\theta(t) = A \cos \omega t + B \sin \omega t$ D. $\theta(t) = A \cos(\omega t + \delta)$ E. More than one of these

OMGBBQPIZZA

Nature tends to minimize energy

Have you worked with phase space before?

A. Yes, and I recall how that worksB. Yes, I think so...ok, actually, maybe...C. I have no idea what you are talking about, hoss

Now that we have sketched $\langle \dot{x}, \dot{v} \rangle = \langle v, 0 \rangle$... Sketch $\langle \dot{x}, \dot{v} \rangle = \langle 0, -x \rangle$ in phase space.

What about $\ddot{x} = -\sin x$?

