A solid cylinder has uniform magnetization \mathbf{M} throughout the volume in the ϕ direction as shown. In which direction does the bound surface current flow on the (curved) sides?
A. There is no bound surface current.
B. The current flows in the $\pm \phi$ direction.
C. The current flows in the $\pm s$ direction.
D. The current flows in the $\pm z$ direction.
E. The direction is more complicated.

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. What is the direction of the bound volume current?
A. \mathbf{J}_{B} points parallel to I
B. \mathbf{J}_{B} points anti-parallel to I
C. It's zero!
D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. We know B will be CCW as viewed from above. (Right?) What about \mathbf{H} and \mathbf{M} inside the cylinder?
A. Both are CCW
B. Both are CW
C. \mathbf{H} is CCW, but \mathbf{M} is CW
D. \mathbf{H} is CW, \mathbf{M} is CCW
E. ???

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. What is the direction of the bound volume current?
A. \mathbf{J}_{B} points parallel to I
B. \mathbf{J}_{B} points anti-parallel to I
C. It's zero!
D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. What is the direction of the bound surface current?
A. \mathbf{K}_{B} points parallel to I
B. \mathbf{K}_{B} points anti-parallel to I
C. Other/not sure

For linearly magnetizable materials, the relationship between the magnetization and the H -field is,

$$
\mathbf{M}=\chi_{m} \mathbf{H}
$$

What do you expect the sign of X_{m} to be for a paramagnetic/diamagnetic material?
A. para: $\chi_{m}<0$ dia: $\chi_{m}>0$
B. para: $\chi_{m}>0$ dia: $\chi_{m}<0$
C. Both positive
D. Both negative

