A solid cylinder has uniform magnetization ${f M}$ throughout the volume in the ϕ direction as shown. In which direction does the bound surface current flow on the (curved) sides?

A. There is no bound surface current. B. The current flows in the $\pm \phi$ direction. C. The current flows in the $\pm s$ direction. D. The current flows in the $\pm z$ direction. E. The direction is more complicated.

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound volume current?

> A. J_B points parallel to IB. J_B points anti-parallel to IC. It's zero! D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current *I* along the +*z* direction. We know **B** will be CCW as viewed from above. (Right?) What about **H** and **M** inside the cylinder?

A. Both are CCW
B. Both are CW
C. H is CCW, but M is CW
D. H is CW, M is CCW
E. ???

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound volume current?

> A. \mathbf{J}_B points parallel to IB. \mathbf{J}_B points anti-parallel to IC. It's zero! D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound surface current?

> A. \mathbf{K}_B points parallel to IB. \mathbf{K}_B points anti-parallel to IC. Other/not sure

For linearly magnetizable materials, the relationship between the magnetization and the H-field is,

$$\mathbf{M} = \chi_m \mathbf{H}$$

What do you expect the sign of X_m to be for a paramagnetic/diamagnetic material?

- A. para: $\chi_m < 0$ dia: $\chi_m > 0$
- B. para: $\chi_m > 0$ dia: $\chi_m < 0$

C. Both positive

D. Both negative