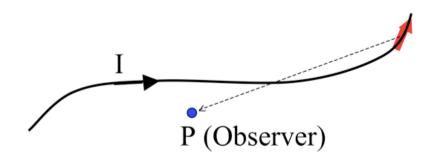
What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?



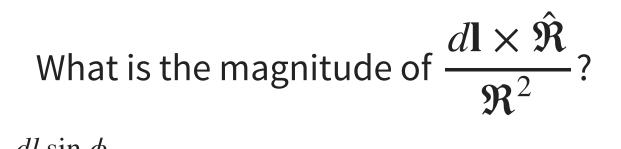
A. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P, by red)$ B. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ into page C. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ out of page D. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P, by red)$ E. Something else!! I have two very long, parallel wires each carrying a current I_1 and I_2 , respectively. In which direction is the force on the wire with the current I_2 ?

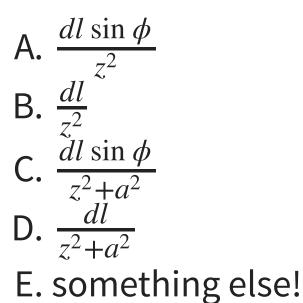
I۱

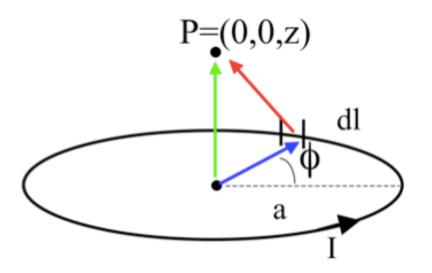
l,

A. Up B. Down C. Right D. Left

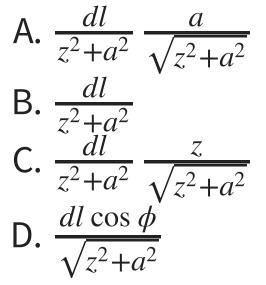
E. Into or out of the page



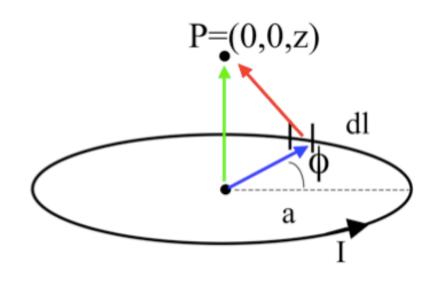




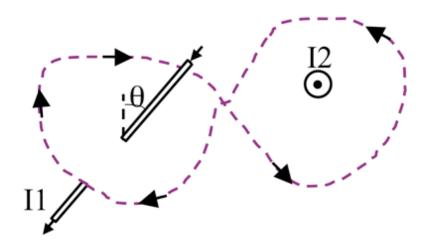
What is $d\mathbf{B}_z$ (the contribution to the vertical component of \mathbf{B} from this $d\mathbf{l}$ segment?)



E. Something else!



What is $\oint \mathbf{B} \cdot d\mathbf{l}$ around this purple (dashed) Amperian loop?



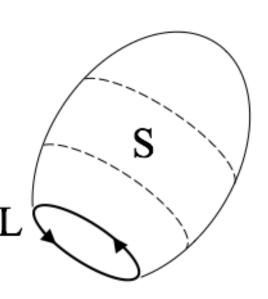
A.
$$\mu_0(|I_2| + |I_1|)$$

B. $\mu_0(|I_2| - |I_1|)$
C. $\mu_0(|I_2| + |I_1| \sin \theta)$
D. $\mu_0(|I_2| - |I_1| \sin \theta)$
E. $\mu_0(|I_2| + |I_1| \cos \theta)$

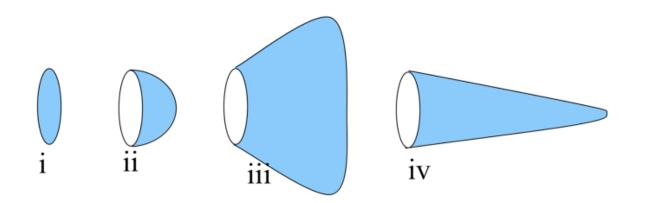
Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field **B** obeys:

$$\int_{S} (\nabla \times \mathbf{B}) \cdot dA = \oint_{L} \mathbf{B} \cdot d\mathbf{I}$$

Does Stoke's Theorem apply for any surface S bounded by a perimeter L, even this balloon-shaped surface S?



A. Yes B. No C. Sometimes Rank order $\int \mathbf{J} \cdot d\mathbf{A}$ (over blue surfaces) where \mathbf{J} is uniform, going left to right:



A. iii > iv > ii > i
B. iii > i > ii > iv
C. i > ii > iii > iv
D. Something else!!
E. Not enough info given!!

Much like Gauss's Law, Ampere's Law is always true (for magnetostatics), but only useful when there's sufficient symmetry to "pull B out" of the integral.

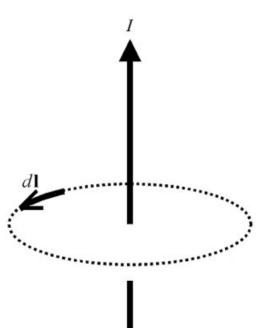
So we need to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can **B** point radially (i.e., in the \hat{s} direction)?

A. Yes B. No C. ??? Continuing to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can ${f B}$ depend on z or ϕ ?

A. Yes B. No C. ???



Finalizing the argument for what ${\boldsymbol{B}}$ looks like and what it can depend on.

For the case of an infinitely long wire, can **B** have a \hat{z} component?

A. Yes B. No C. ??? For the infinite wire, we argued that $\mathbf{B}(\mathbf{r}) = B(s)\hat{\phi}$. For the case of an infinitely long **thick** wire of radius *a*, is this functional form still correct? Inside and outside the wire?

A. Yes
B. Only inside the wire (s < a)
C. Only outside the wire (s > a)
D. No