A wire loop in a B field has a current I. The B-field is localized, it's only in the hatched region, roughly zero elsewhere. Which way is I flowing to hold the mass in place?
A. Clockwise
B. Counter-clockwise
C. You cannot "levitate" like this!
B (into page, uniform)

I feel that Exam 2 was a fair assessment.
A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

I feel that Exam 2 was aligned with what we have been doing (in class and on homework).
A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

I felt better prepared for Exam 2 than Exam 1.
A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

A proton (speed v) enters a region of uniform B. v makes an angle θ with B. What is the subsequent path of the proton?

A. Helical
B. Straight line
C. Circular motion, \perp to page. (plane of circle is \perp to \mathbf{B})
D. Circular motion, \perp to page. (plane of circle at angle θ w.r.t. B)
E. Impossible. \mathbf{v} should always be \perp to \mathbf{B}

In the first stage of the mass spectrometer, with $\mathbf{E}=E_{0} \hat{z}$ (pointing upward) and $\mathbf{B}=B_{0} \hat{x}$ (pointing out of the page),
which particles travel through in a straight line?
A. All particles regardless of speed
B. Particles with speed B_{0} / E_{0}
C. Particles with speed E_{0} / B_{0}
D. Can't tell without knowing q and/or m

You may assume all particles move exclusively in the $+y$ direction.

If we place a physical filter (i.e., a piece of metal with a thin slot that is a bit larger than the beam width to avoid diffraction) at the end of the first stage, which particles
(assume they are all positively charged) hit the upper-part of the filter? Which hit the lower part?
A. Fast moving particles hit the upper part; slow ones hit the lower part
B. Slow moving particles hit the upper part; fast ones hit the lower part
C. It's not possible to tell without q and/or m

Can we use the same mass spectrometer set up for negatively and positively charged particles? That is, will our set up distinguish between particles of a given mass and differently-signed charges?
A. Yes
B. No

For our velocity selector where $\mathbf{E}=E_{0} \hat{z}$ and $\mathbf{B}=B_{0} \hat{x}$ and we start particles from rest, we end up with the following coupled equations of motion,

$$
\begin{gathered}
m \dot{v}_{y}=q v_{z} B_{0} \\
m \dot{v}_{z}=q E_{0}-q v_{y} B_{0}
\end{gathered}
$$

How might we solve them for $y(t)$ and $z(t)$?
A. Just integrate the equations of motion
B. Guess the general solution
C. Take the time derivative of one and plug into the other
D. Give up???

