How many boundary conditions (on the potential $V$ ) do you use to find $V$ inside the spherical plastic shell?
A. 1
B. 2
C. 3
D. 4
E. It depends on $V_{0}(\theta)$


- Friday, October 19
- 3-4 pm BPS 1400
- Physics graduate students will explain the contents of the exam, provide study and test taking strategies, go over practice problems, and answer any specific questions you may have.
- In particular, we will go over problems from this practice exam: https://tinyurl.com/y99dbgbm
- Next session
- Tuesday $10 / 233-4$ pm BPS 1400
- Contact Alison Peisker with any questions (peiskera@msu.edu)

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose $V$ on a spherical shell is:

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V (inside)?
A. Many $A_{l}$ terms (but no $B_{l}{ }^{\prime} \mathrm{s}$ )
B. Many $B_{l}$ terms (but no $A_{l}$ 's)
C. Just $A_{0}$ and $A_{2}$
D. Just $B_{0}$ and $B_{2}$
E. Something else!

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose $V$ on a spherical shell is:

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V(outside)?
A. Many $A_{l}$ terms (but no $B_{l}{ }^{\prime} \mathrm{s}$ )
B. Many $B_{l}$ terms (but no $A_{l}$ 's)
C. Just $A_{0}$ and $A_{2}$
D. Just $B_{0}$ and $B_{2}$
E. Something else!

