I have seen Separation of Variables before.

- A. Yes, and I'm comfortable with it.
- B. Yes, but I don't quite remember.
- C. Nope
- D. I'm triggered.

PS. Hi from San Antonio -DC

Our example problem has the following boundary conditions:

•
$$V(0, y > 0) = 0; V(a, y > 0) = 0$$

• $V(x_{0 \to a}, y = 0) = V_0; V(x, y \to \infty) = 0$

If $X'' = c_1 X$ and $Y'' = c_2 Y$ with $c_1 + c_2 = 0$, which is constant is positive?

A. c₁
B. c₂
C. It doesn't matter either can be

Given the two diff. eq's :

$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1 \qquad \frac{1}{Y}\frac{d^2Y}{dy^2} = C_2$$

where $C_1 + C_2 = 0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

A. x
B. y
C.
$$C_1 = C_2 = 0$$
 here
D. It doesn't matter.

Given the two diff. eq's :

$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1 \qquad \frac{1}{Y}\frac{d^2Y}{dy^2} = C_2$$

where $C_1 + C_2 = 0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?

A. x
B. y
C.
$$C_1 = C_2 = 0$$
 here
D. It doesn't matter.

When does $sin(ka)e^{-ky}$ vanish? A. k = 0B. $k = \pi/(2a)$ C. $k = \pi/a$ D. A and C E. A, B, C Suppose $V_1(r)$ and $V_2(r)$ are linearly independent functions which both solve Laplace's equation, $\nabla^2 V = 0$.

Does $aV_1(r) + bV_2(r)$ also solve it (with a and b constants)?

A. Yes. The Laplacian is a linear operator

- B. No. The uniqueness theorem says this scenario is impossible, there are never two independent solutions!
- C. It is a definite yes or no, but the reasons given above just aren't right!
- D. It depends...