For the 1D Laplace problem ($\left.\nabla^{2} V=\partial^{2} V / \partial x^{2}=0\right)$, we can choose the following ansatz:

$$
\begin{aligned}
& \text { A. } k_{0} x \\
& \text { B. } k_{0} x+k_{1} \\
& \text { C. } k_{0} x^{2}+k_{1} x+k_{2} \\
& \text { D. Can't tell }
\end{aligned}
$$

ANNOUNCEMENTS

- Exam 1 graded
- Average: 79.5
- HW 6 Problem 1 and 2
- On your exam, you will see the grade you will receive if you choose to do problem 1 and 2
- You need to collect your exam to do these problems!

EXAM 1 DISTRIBUTION

EXAM 1 (RE)DISTRIBUTION*

Physics GRE Study Sessions

- Monday, October 8
- 4-5 pm BPS 1300
- Physics graduate students will explain the contents of the exam, provide study and test taking strategies, go over practice problems, and answer any specific questions you may have.
- Next sessions
- Friday 10/19 3-4 pm, BPS 1400
- Tuesday 10/23 3-4 pm BPS 1400
- Contact Alison Peisker with any questions (peiskera@msu.edu)

If you put a positive test charge at the center of this cube of charges, could it be in stable equilibrium?
A. Yes
B. No
C. ???

METHOD OF RELAXATION

Consider a function $f(x)$ that is both continuous and continuously differentiable over some domain. Given a step size of a, which could be an approximate derivative of this function somewhere in that domain? $d f / d x \approx$

$$
\begin{aligned}
& \text { A. } f\left(x_{i}+a\right)-f\left(x_{i}\right) \\
& \text { B. } f\left(x_{i}\right)-f\left(x_{i}-a\right) \\
& \text { C. } \frac{f\left(x_{i}+a\right)-f\left(x_{i}\right)}{a} \\
& \text { D. } \frac{f\left(x_{i}\right)-f\left(x_{i}-a\right)}{a}
\end{aligned}
$$

E. More than one of these

If we choose to use:

$$
\frac{d f}{d x} \approx \frac{f\left(x_{i}+a\right)-f\left(x_{i}\right)}{a}
$$

Where are we computing the approximate derivative?
A. a
B. x_{i}
C. $x_{i}+a$
D. Somewhere else

Taking the second derivative of $f(x)$ discretely is as simple as applying the discrete definition of the derivative,

$$
f^{\prime \prime}\left(x_{i}\right) \approx \frac{f^{\prime}\left(x_{i}+a / 2\right)-f^{\prime}\left(x_{i}-a / 2\right)}{a}
$$

Derive the second derivative in terms of f.

With the approximate form of Laplace's equation:

$$
\frac{V\left(x_{i}+a\right)-2 V\left(x_{i}\right)+V\left(x_{i}-a\right)}{a} \approx 0
$$

What is a the appropriate estimate of $V\left(x_{i}\right)$?

$$
\begin{aligned}
& \text { A. } 1 / 2\left(V\left(x_{i}+a\right)-V\left(x_{i}-a\right)\right) \\
& \text { B. } 1 / 2\left(V\left(x_{i}+a\right)+V\left(x_{i}-a\right)\right) \\
& \text { C. } a / 2\left(V\left(x_{i}+a\right)-V\left(x_{i}-a\right)\right) \\
& \text { D. } a / 2\left(V\left(x_{i}+a\right)+V\left(x_{i}-a\right)\right) \\
& \text { E. Something else }
\end{aligned}
$$

To investigate the convergence, we must compare the estimate of V before and after each calculation. For our 1D relaxation code, V will be a 1D array. For the kth estimate, we can compare V_{k} against its previous value by simply taking the difference.

Store this in a variable called err. What is the type for err?
A. A single number
B. A 1D array
C. A 2D array
D. ???

