A spherical shell has a uniform positive charge density on its surface. (There are no other charges around.)

What is the electric field inside the sphere?

A. $\mathbf{E}=0$ everywhere inside
B. \mathbf{E} is non-zero everywhere in the sphere
C. $\mathbf{E}=0$ only that the very center, but non-zero elsewhere inside the sphere.
D. Not enough information given

EXAM 1 INFORMATION

- Exam 1 on Wednesday, October 3rd (BCH 101)
- Next to BPS (Wilson side)
- 7pm-9pm
- Arrive on time!
- Put one seat between you and the next person
- I will provide a formula sheet (posted on Slack already)
- You can bring one-side of a sheet of paper with your own notes.
- 5 questions - True/False, Essay, Code, Graphing, Short Calculations

WHAT'S ON EXAM 1?

- Identify whether conceptual statements about \mathbf{E}, V, ρ, and/or numerical integration are true or false.
- Sketch and discuss delta functions in relation to charge density, ρ
- Explain the process for using a computational alogrithm for predicting \mathbf{E} and write the necessary code to illustrate how it works for a given example
- Calculate the electric field, E, inside and outside a continuous distribution of charge and sketch the results
- Calculate the electric potential, V, for a specific charge distribution and discuss what happens in limiting cases

We are trying to compute the the electric potential $V(\mathbf{r})$ for a line of charge at the location $\langle x, 0, z\rangle$. What is $|\Re|$ in this case?
A. x
B. z
C. $\sqrt{x^{2}+z^{2}}$
D. Something else

We derived the potential for this short rod to be

$$
V(x, z)=\frac{\lambda}{4 \pi \varepsilon_{0}} \log \left[\frac{L+z+\sqrt{x^{2}+(L+z)^{2}}}{L-z+\sqrt{x^{2}+(L-z)^{2}}}\right]
$$

The associated electric field at $\langle x, 0, z\rangle$ location can have the following components:
A. only x
B. only y
C. only z
D. x, y, and z
E. Something else

A spherical shell has a uniform positive charge density on its surface. (There are no other charges around.)

What is the electric field inside the sphere?

A. $\mathbf{E}=0$ everywhere inside
B. \mathbf{E} is non-zero everywhere in the sphere
C. $\mathbf{E}=0$ only that the very center, but non-zero elsewhere inside the sphere.
D. Not enough information given

We derived the electric potential outside $(r>R)$ the charged shell to be

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

What is it for $r<R$?

A. Zero
B. Constant
C. It changes but I don't know how yet
D. Something else

Could this be a plot of $|\mathbf{E}(r)|$? Or $V(r)$? (for SOME physical situation?)
A. Could be $E(r)$, or $V(r)$
B. Could be $E(r)$, but can't be $V(r)$
C. Can't be $E(r)$, could be $V(r)$
D. Can't be either
E. ???

