Consider a cube of constant charge density centered at the origin.

True or False: I can use Gauss' Law to find the electric directly above the center of the cube.
A. True and I can argue how we'd do it.
B. True. I'm sure we can, but I don't see how to just yet.
C. False. I'm pretty sure we can't, but I can't say exactly why.
D. False and I can argue why we can't do it.

Consider a spherical Gaussian surface. What is the $d \mathbf{A}$ in

$$
\iint \mathbf{E} \cdot d \mathbf{A} ?
$$

A. $r d \theta d \phi \hat{r}$
B. $r^{2} d \theta d \phi \hat{r}$
C. $r \sin \theta d \theta d \phi \hat{r}$
D. $r^{2} \sin \theta d \theta d \phi \hat{r}$
E. Something else

Consider an infinite sheet of charge with uniform surface charge density $+\sigma$ lying in the $x-y$ plane. From symmetry arguments, we can argue that $\mathbf{E}(x, y, z)$ can be simplified to:
A. $\mathbf{E}(x, y)$; direction undetermined
B. $E_{z}(x, y)$
C. $\mathbf{E}(z)$; direction undetermined
D. $E_{z}(z)$
E. Something else

We derived that the electric field due to an infinite sheet with charge density σ was as follows:

$$
\mathbf{E}(z)=\left\{\begin{array}{lll}
\frac{\sigma}{2 \varepsilon_{0}} \hat{k} & \text { if } & \mathrm{z}>0 \\
\frac{-\sigma}{2 \varepsilon_{0}} \hat{k} & \text { if } & \mathrm{z}<0
\end{array}\right.
$$

What does that tell you about the difference in the field when we cross the sheet, $\mathbf{E}(+z)-\mathbf{E}(-z)$?
A. it's zero
B. it's $\frac{\sigma}{\varepsilon_{0}}$
C. it's $-\frac{\sigma}{\varepsilon_{0}}$
D. it's $+\frac{\sigma}{\varepsilon_{0}} \hat{k}$
E. it's $-\frac{\sigma}{\varepsilon_{0}} \hat{k}$

ELECTRIC POTENTIAL

Which of the following two fields has zero curl?

What is the curl of the vector field, $\mathbf{v}=c \hat{\phi}$, in the region shown below?
A. non-zero everywhere
B. zero at some points, non-zero at others
C. zero curl everywhere

What is the curl of this vector field, in the red region shown below?

A. non-zero everywhere in the box
B. non-zero at a limited set of points
C. zero curl everywhere shown
D. we need a formula to decide

What is the curl of this vector field, $\mathbf{v}=\frac{c}{S} \hat{\phi}$, in the red region shown below?

A. non-zero everywhere in the box
B. non-zero at a limited set of points
C. zero curl everywhere shown

