This picture represents the field lines of a single positive point charge.

What is the divergence in the boxed region? What is the divergence of the whole field?
A. Boxed region is zero; whole field is zero
B. Boxed region is non-zero; whole field is zero
C. Boxed region is zero; whole field is non-zero
D. Boxed region is non-zero; whole field is non-zero
E. ???

Activity: For a the electric field of a point charge,

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r}, \text { compute } \nabla \cdot \mathbf{E} .
$$

Hint: The front fly leaf of Griffiths suggests that the we take:

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} E_{r}\right)
$$

Remember this?

What is the value of:
 $\int_{-\infty}^{\infty} x^{2} \delta(x-2) d x$

A. 0
B. 2
C. 4
D. ∞
E. Something else

Activity: Compute the following integrals. Note anything special you had to do.

- Row 1-2: $\int_{-\infty}^{\infty} x e^{x} \delta(x-1) d x$
- Row 3-4: $\int_{\infty}^{-\infty} \log (x) \delta(x-2) d x$
- Row 5-6: $\int_{-\infty}^{0} x e^{x} \delta(x-1) d x$
- Row 6+: $\int_{-\infty}^{\infty}(x+1)^{2} \delta(4 x) d x$

Compute:
$\int_{-\infty}^{\infty} x^{2} \delta(3 x+5) d x$
A. $25 / 3$
B. $-5 / 3$
C. $25 / 27$
D. 25/9
E. Something else

A point charge (q) is located at position \mathbf{R}, as shown. What is $\rho(\mathbf{r})$, the charge density in all space?

$$
\begin{aligned}
& \text { A. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{R}) \\
& \text { B. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{r}) \\
& \text { C. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{R}-\mathbf{r}) \\
& \text { D. } \rho(\mathbf{r})=q \delta^{3}(\mathbf{r}-\mathbf{R})
\end{aligned}
$$

E. Something else??

> origin

What are the units of $\delta(x)$ if x is measured in meters?
A. $\delta(x)$ is dimension less ('no units')
B. [m]: Unit of length
C. $\left[\mathrm{m}^{2}\right]$: Unit of length squared
D. $\left[\mathrm{m}^{-1}\right]: 1$ / (unit of length)
E. $\left[\mathrm{m}^{-2}\right]: 1$ / (unit of length squared)

What are the units of $\delta^{3}(\mathbf{r})$ if the components of \mathbf{r} are measured in meters?
A. [m]: Unit of length
B. $\left[\mathrm{m}^{2}\right]$: Unit of length squared
C. $\left[\mathrm{m}^{-1}\right]: 1$ / (unit of length)
D. $\left[\mathrm{m}^{-2}\right]: 1 /$ (unit of length squared)
E. None of these.

What is the divergence in the boxed region?
A. Zero
B. Not zero
C. ???

