True or False The following mathematical operation makes sense and is technically valid.

 $\nabla \cdot \nabla T(x, y, z)$

- A. Yes, it will produce a vector field.
- B. Yes, it will produce a scalar field.
- C. No, you can not take the divergence of a scalar field.
- D. I don't remember what this means.

Have you taken CMSE 201?

A. I have taken CMSE 201.

- B. I am currently taking CMSE 201.
- C. I have not taken CMSE 201, but I plan to.
- D. I have not taken CMSE 201, and don't plan to.

ANNOUNCEMENTS

- Homework 1 is due Friday in class
- Homework 2 will be posted Friday and will cover through section 2.1
 - It is due next Friday
 - We will come back to section 1.5 later
- Make sure you have registered your clicker!
 - I will start shaming people publically on Friday.
 - https://goo.gl/nrebCr

You are trying to compute the work done by a force, $\mathbf{F} = a\hat{x} + x\hat{y}$, along the line y = 2x from $\langle 0, 0 \rangle$ to $\langle 1, 2 \rangle$. What is $d\mathbf{I}$?

> A. dlB. $dx \hat{x}$ C. $dy \hat{y}$ D. $2dx \hat{x}$ E. Something else

You are trying to compute the work done by a force, $\mathbf{F} = a\hat{x} + x\hat{y}$, along the line y = 2x from $\langle 0, 0 \rangle$ to $\langle 1, 2 \rangle$. Given that $d\mathbf{l} = dx \ \hat{x} + dy \ \hat{y}$, which of the following forms of the integral is correct?

A.
$$\int_0^1 a \, dx + \int_0^2 x \, dy$$

B. $\int_0^1 (a \, dx + 2x \, dx)$
C. $\frac{1}{2} \int_0^2 (a \, dy + y \, dy)$
D. More than one is correct

A certain fluid has a velocity field given by $\mathbf{v} = x\hat{x} + z\hat{y}$. Which component(s) of the field contributed to "fluid flux" integral ($\int_{S} \mathbf{v} \cdot d\mathbf{A}$) through the x-z plane?

> A. v_x B. v_y C. both D. neither

A certain fluid has a velocity field given by $\mathbf{v} = x\hat{x} + z\hat{y}$. If we intend to calculate the "fluid flux" integral $(\int_{S} \mathbf{v} \cdot d\mathbf{A})$ through the x-z plane, what is $d\mathbf{A}$ in this case? Be specific!

A. $\langle dx \, dy, 0, 0 \rangle$ B. $\langle dx \, dz, 0, 0 \rangle$ C. $\langle dy \, dz, 0, 0 \rangle$ D. It's none of these For the same fluid with velocity field given by $\mathbf{v} = x\hat{x} + z\hat{y}$. What is the value of the "fluid flux" integral $(\int_S \mathbf{v} \cdot d\mathbf{A})$ through the entire x-y plane?

A. It is zero

B. It is something finite

C. It is infinite

D. I can't tell without doing the integral

A rod (radius *R*) with a hole (radius *r*) drilled down its entire length *L* has a mass density of $\frac{\rho_0 \phi}{\phi_0}$ (where ϕ is the normal polar coordinate).

To find the total mass of this rod, which coordinate system should be used (take note that the mass density varies as a function of angle):

A. Cartesian (x, y, z)B. Spherical (r, ϕ, θ) C. Cylindrical (s, ϕ, z) D. It doesn't matter, just pick one.

Which of the following two fields has zero divergence?

A. Both do.B. Only I is zeroC. Only II is zeroD. Neither is zeroE. ???

Which of the following two fields has zero curl?

A. Both do.B. Only I is zeroC. Only II is zeroD. Neither is zeroE. ???