True or False The following mathematical operation makes sense and is technically valid.

$$
\nabla \cdot \nabla T(x, y, z)
$$

A. Yes, it will produce a vector field.
B. Yes, it will produce a scalar field.
C. No, you can not take the divergence of a scalar field.
D. I don't remember what this means.

Have you taken CMSE 201?

A. I have taken CMSE 201.
B. I am currently taking CMSE 201.
C. I have not taken CMSE 201, but I plan to.
D. I have not taken CMSE 201, and don't plan to.

ANNOUNCEMENTS

- Homework 1 is due Friday in class
- Homework 2 will be posted Friday and will cover through section 2.1
- It is due next Friday
- We will come back to section 1.5 later
- Make sure you have registered your clicker!
- I will start shaming people publically on Friday.
- https://goo.gl/nrebCr

You are trying to compute the work done by a force, $\mathbf{F}=a \hat{x}+x \hat{y}$, along the line $y=2 x$ from $\langle 0,0\rangle$ to $\langle 1,2\rangle$. What is $d \mathbf{l}$?

A. $d l$
B. $d x \hat{x}$
C. $d y \hat{y}$
D. $2 d x \hat{x}$
E. Something else

You are trying to compute the work done by a force, $\mathbf{F}=a \hat{x}+x \hat{y}$, along the line $y=2 x$ from $\langle 0,0\rangle$ to $\langle 1,2\rangle$. Given that $d \mathbf{l}=d x \hat{x}+d y \hat{y}$, which of the following forms of the integral is correct?

$$
\begin{aligned}
& \text { A. } \int_{0}^{1} a d x+\int_{0}^{2} x d y \\
& \text { B. } \int_{0}^{1}(a d x+2 x d x) \\
& \text { C. } \frac{1}{2} \int_{0}^{2}(a d y+y d y)
\end{aligned}
$$

D. More than one is correct

A certain fluid has a velocity field given by $\mathbf{v}=x \hat{x}+z \hat{y}$. Which component(s) of the field contributed to "fluid flux" integral $\left(\int_{S} \mathbf{v} \cdot d \mathbf{A}\right)$ through the x-z plane?
A. v_{x}
B. v_{y}
C. both
D. neither

A certain fluid has a velocity field given by $\mathbf{v}=x \hat{x}+z \hat{y}$. If we intend to calculate the "fluid flux" integral ($\int_{S} \mathbf{v} \cdot d \mathbf{A}$) through the x-z plane, what is $d \mathbf{A}$ in this case? Be specific!

$$
\begin{aligned}
& \text { A. }\langle d x d y, 0,0\rangle \\
& \text { B. }\langle d x d z, 0,0\rangle \\
& \text { C. }\langle d y d z, 0,0\rangle \\
& \text { D. It's none of these }
\end{aligned}
$$

For the same fluid with velocity field given by $\mathbf{v}=x \hat{x}+z \hat{y}$. What is the value of the "fluid flux" integral $\left(\int_{S} \mathbf{v} \cdot d \mathbf{A}\right)$ through the entire x - y plane?
A. It is zero
B. It is something finite
C. It is infinite
D. I can't tell without doing the integral

A rod (radius R) with a hole (radius r) drilled down its entire length L has a mass density of $\frac{\rho_{0} \phi}{\phi_{0}}$ (where ϕ is the normal polar coordinate).

To find the total mass of this rod, which coordinate system should be used (take note that the mass density varies as a function of angle):
A. Cartesian (x, y, z)
B. Spherical (r, ϕ, θ)
C. Cylindrical (s, ϕ, z)
D. It doesn't matter, just pick one.

Which of the following two fields has zero divergence?

\[

\]

Which of the following two fields has zero curl?

