On Wednesday, you took an assessment of electromagnetism concepts.

How did that assessment feel for you?
A. I think it went fine; I felt like I knew most of the answers.
B. I was concerned about one or two questions; but most of the questions were familiar.
C. I guessed (or left blank) most of the questions; none of the questions really felt familiar.

ANNOUNCEMENTS

- Exams!!!
- Evening Exams
- Oct 3 (BCH 101) and Nov 7 (1415 BPS), 7pm-9pm
- Homework Help Session
- Wednesday 5:00pm-6:30pm in 1300 BPS
- Thursday 4:30pm-6:00pm in A158 PSS

MATHEMATICAL PRELIMINARIES

$$
\begin{array}{cc}
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} & \int \mathbf{E} \cdot d \mathbf{A}=\int \frac{\rho}{\epsilon_{0}} d \tau \\
\nabla \cdot \mathbf{B}=0 & \int \mathbf{B} \cdot d \mathbf{A}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \int \mathbf{E} \cdot d \mathbf{l}=-\int \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{A} \\
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} & \int \mathbf{B} \cdot d \mathbf{A}=\mu_{0} \int\left(\mathbf{J}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
\end{array}
$$

Two charges +Q and -Q are fixed a distance r apart. The direction of the force on a test charge -q at A is...
A. Up
B. Down
C. Left

D. Right
E. Some other direction, or $F=0$

In a typical Cartesian coordinate system, vector \mathbf{A} lies along the $+\hat{x}$ direction and vector \mathbf{B} lies along the $-\hat{y}$ direction. What is the direction of $\mathbf{A} \times \mathbf{B}$?

$$
\begin{aligned}
& \text { A. }-\hat{x} \\
& \text { B. }+\hat{y} \\
& \text { C. }+\hat{z} \\
& \text { D. }-\hat{z} \\
& \text { E. Can't tell }
\end{aligned}
$$

In a typical Cartesian coordinate system, vector \mathbf{A} lies along the $+\hat{x}$ direction and vector \mathbf{B} lies along the $-\hat{y}$ direction. What is the direction of $\mathbf{B} \times \mathbf{A}$?

$$
\begin{aligned}
& \text { A. }-\hat{x} \\
& \text { B. }+\hat{y} \\
& \text { C. }+\hat{z} \\
& \text { D. }-\hat{z} \\
& \text { E. Can't tell }
\end{aligned}
$$

YOU DERIVE IT

Consider the radial unit vector (\hat{r}) in the spherical coordinate system as shown in the figure to the right.

Determine the z component of this unit vector in the Cartesian (x, y, z)

system as a function of r, θ, ϕ.

In cylindrical (2D) coordinates, what would be the correct description of the position vector \mathbf{r} of the point P shown at $(x, y)=(1,1)$?
A. $\mathbf{r}=\sqrt{2} \hat{s}$

B. $\mathbf{r}=\sqrt{2} \hat{s}+\pi / 4 \hat{\phi}$
C. $\mathbf{r}=\sqrt{2} \hat{s}-\pi / 4 \hat{\phi}$
D. $\mathbf{r}=\pi / 4 \hat{\phi}$
E. Something else entirely

How is the vector \mathfrak{R}_{12} related to \mathbf{r}_{1} and \mathbf{r}_{2} ?

$$
\begin{aligned}
& \text { A. } \mathfrak{R}_{12}=\mathbf{r}_{1}+\mathbf{r}_{2} \\
& \text { B. } \mathfrak{R}_{12}=\mathbf{r}_{1}-\mathbf{r}_{2} \\
& \text { C. } \mathfrak{R}_{12}=\mathbf{r}_{2}-\mathbf{r}_{1} \\
& \text { D. None of these }
\end{aligned}
$$

Coulomb's Law: $\mathbf{F}=\frac{k q_{1} q_{2}}{|\mathfrak{R}|^{2}} \hat{\mathfrak{R}}$ where \boldsymbol{R} is the relative position vector. In the figure, q_{1} and q_{2} are 2 m apart. Which arrow can represent $\hat{\mathfrak{R}}$?

A. A
B. B
C. C
D. More than one (or NONE) of the above
E. You can't decide until you know if q_{1} and q_{2} are the same or opposite charges

