We defined the volume current density in terms of the differential, $\mathbf{J} \equiv \dfrac{d\mathbf{I}}{da_{\perp}}$. When is it ok to determine the volume current density by taking the ratio of current to cross-sectional area? $$\mathbf{J} \stackrel{?}{=} \dfrac{\mathbf{I}}{A}$$ 1. Never 2. Always 3. $I$ is uniform 4. $I$ is uniform and $A$ is $\perp$ to $I$ 5. None of these Note: * CORRECT ANSWER: D
Current $I$ flows down a wire (length $L$) with a square cross section (side $a$). If it is uniformly distributed over the outer surfaces only, what is the magnitude of the surface current density $K$? 1. $K = I/a^2$ 2. $K = I/a$ 3. $K = I/4a$ 4. $K = aI$ 5. None of the above Note: * CORRECT ANSWER: C
A "ribbon" (width $a$) of surface current flows (with surface current density $K$). Right next to it is a second identical ribbon of current. Viewed collectively, what is the new total surface current density? <img src="./images/current_ribbon.png" align="right" style="width: 300px";/> 1. $K$ 2. $2K$ 3. $K/2$ 4. Something else Note: * CORRECT ANSWER: A
A "ribbon" (width $a$) with uniform surface current density $K$ passes through a uniform magnetic field $\mathbf{B}_{ext}$. Only the length $b$ along the ribbon is in the field. What is the magnitude of the force on the ribbon? <img src="./images/force_on_k_B.png" align="right" style="width: 500px";/> 1. $KB$ 2. $aKB$ 3. $abKB$ 4. $bKB/a$ 5. $KB/(ab)$ Note: * CORRECT ANSWER: C
Which of the following is a statement of charge conservation? 1. $\dfrac{\partial \rho}{\partial t} = -\nabla \mathbf{J}$ 2. $\dfrac{\partial \rho}{\partial t} = -\nabla \cdot \mathbf{J}$ 3. $\dfrac{\partial \rho}{\partial t} = -\int \nabla \cdot \mathbf{J} d\tau$ 4. $\dfrac{\partial \rho}{\partial t} = -\oint \mathbf{J} \cdot d\mathbf{A}$ Note: * CORRECT ANSWER: B
To find the magnetic field $\mathbf{B}$ at P due to a current-carrying wire we use the Biot-Savart law, $$\mathbf{B}(\mathbf{r}) = \dfrac{\mu_0}{4\pi}I\int \dfrac{d\mathbf{l}\times\hat{\mathfrak{R}}}{\mathfrak{R}^2}$$ In the figure, with $d\mathbf{l}$ shown, which purple vector best represents $\mathfrak{R}$? <img src="./images/linecurrent_r.png" align="center" style="width: 400px";/> Note: * CORRECT ANSWER: A
<img src="./images/linecurrent_plain.png" align="right" style="width: 400px";/> To find the magnetic field $\mathbf{B}$ at P due to a current-carrying wire we use the Biot-Savart law, $$\mathbf{B}(\mathbf{r}) = \dfrac{\mu_0}{4\pi}I\int \dfrac{d\mathbf{l}\times\hat{\mathfrak{R}}}{\mathfrak{R}^2}$$ What is the direction of the infinitesimal contribution $\mathbf{B}(P)$ created by current in $d\mathbf{l}$? 1. Up the page 2. Directly away from $d\mathbf{l}$ (in the plane of the page) 3. Into the page 4. Out of the page 5. Some other direction Note: * CORRECT ANSWER: C
What is the magnitude of $\dfrac{d\mathbf{l}\times\hat{\mathfrak{R}}}{\mathfrak{R}^2}$? <img src="./images/linecurrent_R_shown.png" align="right" style="width: 400px";/> 1. $\frac{dl \sin\theta}{\mathfrak{R}^2}$ 2. $\frac{dl \sin\theta}{\mathfrak{R}^3}$ 3. $\frac{dl \cos\theta}{\mathfrak{R}^2}$ 4. $\frac{dl \cos\theta}{\mathfrak{R}^3}$ 5. something else! Note: * CORRECT ANSWER: A
What is the value of $I \dfrac{d\mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^2}$? <img src="./images/linecurrent_y0.png" align="right" style="width: 300px";/> 1. $\frac{I\,y\,dx'}{[(x')^2+y^2]^{3/2}}\hat{z}$ 2. $\frac{I\,x'\,dx'}{[(x')^2+y^2]^{3/2}}\hat{y}$ 3. $\frac{-I\,x'\,dx'}{[(x')^2+y^2]^{3/2}}\hat{y}$ 4. $\frac{-I\,y\,dx'}{[(x')^2+y^2]^{3/2}}\hat{z}$ 5. Other! Note: * CORRECT ANSWER: D