You are trying to compute the work done by a force, $\mathbf{F} = a\hat{x} + x\hat{y}$, along the line y = 2x from $\langle 0, 0 \rangle$ to $\langle 1, 2 \rangle$. What is $d\mathbf{I}$?

> A. dlB. $dx \hat{x}$ C. $dy \hat{y}$ D. $2dx \hat{x}$ E. Something else

You are trying to compute the work done by a force, $\mathbf{F} = a\hat{x} + x\hat{y}$, along the line y = 2x from $\langle 0, 0 \rangle$ to $\langle 1, 2 \rangle$. Given that $d\mathbf{l} = dx \ \hat{x} + dy \ \hat{y}$, which of the following forms of the integral is correct?

A.
$$\int_0^1 a \, dx + \int_0^2 x \, dy$$

B.
$$\int_0^1 (a \, dx + 2x \, dx)$$

C.
$$\frac{1}{2} \int_0^2 (a \, dy + y \, dy)$$

D. More than one is correct

A certain fluid has a velocity field given by $\mathbf{v} = x\hat{x} + z\hat{y}$. Which component(s) of the field contributed to "fluid flux" integral ($\int_{S} \mathbf{v} \cdot d\mathbf{A}$) through the x-z plane?

> A. v_x B. v_y C. both D. neither

For the same fluid with velocity field given by $\mathbf{v} = x\hat{x} + z\hat{y}$. What is the value of the "fluid flux" integral $(\int_S \mathbf{v} \cdot d\mathbf{A})$ through the entire x-y plane?

A. It is zeroB. It is something finiteC. It is infiniteD. I can't tell without doing the integral

A rod (radius *R*) with a hole (radius *r*) drilled down its entire length *L* has a mass density of $\frac{\rho_0 \phi}{\phi_0}$ (where ϕ is the normal polar coordinate).

To find the total mass of this rod, which coordinate system should be used (take note that the mass density varies as a function of angle):

> A. Cartesian (x, y, z)B. Spherical (r, ϕ, θ) C. Cylindrical (s, ϕ, z) D. It doesn't matter, just pick one.

Which of the following two fields has zero divergence?

A. Both do. B. Only I is zero C. Only II is zero D. Neither is zero E. ???

Which of the following two fields has zero curl?

A. Both do.B. Only I is zeroC. Only II is zeroD. Neither is zeroE. ???

Consider a vector field defined as the gradient of some wellbehaved scalar function:

 $\mathbf{v}(x, y, z) = \nabla T(x, y, z).$

What is the value of $\oint_C \mathbf{v} \cdot d\mathbf{l}$?

A. Zero

B. Non-zero, but finite

C. Can't tell without a function for ${\cal T}$